skip to main content

This content will become publicly available on March 28, 2023

Title: Rolis: a software approach to efficiently replicating multi-core transactions
This paper presents Rolis, a new speedy and fault-tolerant replicated multi-core transactional database system. Rolis's aim is to mask the high cost of replication by ensuring that cores are always doing useful work and not waiting for each other or for other replicas. Rolis achieves this by not mixing the multi-core concurrency control with multi-machine replication, as is traditionally done by systems that use Paxos to replicate the transaction commit protocol. Instead, Rolis takes an "execute-replicate-replay" approach. Rolis first speculatively executes the transaction on the leader machine, and then replicates the per-thread transaction log to the followers using a novel protocol that leverages independent Paxos instances to avoid coordination, while still allowing followers to safely replay. The execution, replication, and replay are carefully designed to be scalable and have nearly zero coordination overhead across cores. Our evaluation shows that Rolis can achieve 1.03M TPS (transactions per second) on the TPC-C workload, using a 3-replica setup where each server has 32 cores. This throughput result is orders of magnitude higher than traditional software approaches we tested (e.g., 2PL), and is comparable to state-of-the-art, fault-tolerant, in-memory storage systems built using kernel bypass and advanced networking hardware, even though Rolis runs on commodity more » machines. « less
Authors:
; ; ; ;
Award ID(s):
2107147 2124184 2130590
Publication Date:
NSF-PAR ID:
10326876
Journal Name:
Proceedings of the European Conference on Computer Systems (EuroSys)
Page Range or eLocation-ID:
69 to 84
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose the Write-Once Register (WOR) as an abstraction for building and verifying distributed systems. A WOR exposes a simple, data-centric API: clients can capture, write, and read it. Applications can use a sequence or a set of WORs to obtain properties such as durability, concurrency control, and failure atomicity. By hiding the logic for distributed coordination underneath a data-centric API, the WOR abstraction enables easy, incremental, and extensible implementation and verification of applications built above it. We present the design, implementation, and verification of a system called WormSpace that provides developers with an address space of WORs, implementing each WOR via a Paxos instance. We describe three applications built over WormSpace: a flexible, efficient Multi-Paxos implementation; a shared log implementation with lower append latency than the state-of-the-art; and a fault-tolerant transaction coordinator that uses an optimal number of round-trips. We show that these applications are simple, easy to verify, and match the performance of unverified monolithic implementations. We use a modular layered verification approach to link the proofs for WormSpace, its applications, and a verified operating system to produce the first verified distributed system stack from the application to the operating system.
  2. Replicated state machines are linearizable, fault-tolerant groups of replicas that are coordinated using a consensus algorithm. Copilot replication is the first 1-slowdown-tolerant consensus protocol: it delivers normal latency despite the slowdown of any 1 replica. Copilot uses two distinguished replicas—the pilot and copilot—to proactively add redundancy to all stages of processing a client’s command. Copilot uses dependencies and deduplication to resolve potentially differing orderings proposed by the pilots. To avoid dependencies leading to either pilot being able to slow down the group, Copilot uses fast takeovers that allow a fast pilot to complete the ongoing work of a slow pilot. Copilot includes two optimizations—ping-pong batching and null dependency elimination—that improve its performance when there are 0 and 1 slow pilots respectively. Our evaluation of Copilot shows its performance is lower but competitive with Multi-Paxos and EPaxos when no replicas are slow. When a replica is slow, Copilot is the only protocol that avoids high latencies.
  3. Replicated state machines are linearizable, fault-tolerant groups of replicas that are coordinated using a consensus algorithm. Copilot replication is the first 1-slowdown-tolerant consensus protocol: it delivers normal latency despite the slowdown of any 1 replica. Copilot uses two distinguished replicas—the pilot and copilot—to proactively add redundancy to all stages of processing a client’s command. Copilot uses dependencies and deduplication to resolve potentially differing orderings proposed by the pilots. To avoid dependencies leading to either pilot being able to slow down the group, Copilot uses fast takeovers that allow a fast pilot to complete the ongoing work of a slow pilot. Copilot includes two optimizations—ping-pong batching and null dependency elimination—that improve its performance when there are 0 and 1 slow pilots respectively. Our evaluation of Copilot shows its performance is lower but competitive with Multi-Paxos and EPaxos when no replicas are slow. When a replica is slow, Copilot is the only protocol that avoids high latencies.
  4. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should producemore »identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues.« less
  5. Despite recent advances, guaranteeing the correctness of large-scale distributed applications without compromising performance remains a challenging problem. Network and node failures are inevitable and, for some applications, careful control over how they are handled is essential. Unfortunately, existing approaches either completely hide these failures behind an atomic state machine replication (SMR) interface, or expose all of the network-level details, sacrificing atomicity. We propose a novel, compositional, atomic distributed object (ADO) model for strongly consistent distributed systems that combines the best of both options. The object-oriented API abstracts over protocol-specific details and decouples high-level correctness reasoning from implementation choices. At the same time, it intentionally exposes an abstract view of certain key distributed failure cases, thus allowing for more fine-grained control over them than SMR-like models. We demonstrate that proving properties even of composite distributed systems can be straightforward with our Coq verification framework, Advert, thanks to the ADO model. We also show that a variety of common protocols including multi-Paxos and Chain Replication refine the ADO semantics, which allows one to freely choose among them for an application's implementation without modifying ADO-level correctness proofs.