New functionality is added to the LAMMPS molecular simulation package, which increases the versatility with which LAMMPS can interface with supporting software and manipulate information associated with bonded force fields. We introduce the “type label” framework that allows atom types and their higher-order interactions (bonds, angles, dihedrals, and impropers) to be represented in terms of the standard atom type strings of a bonded force field. Type labels increase the human readability of input files, enable bonded force fields to be supported by the OpenKIM repository, simplify the creation of reaction templates for the REACTER protocol, and increase compatibility with external visualization tools, such as VMD and OVITO. An introductory primer on the forms and use of bonded force fields is provided to motivate this new functionality and serve as an entry point for LAMMPS and OpenKIM users unfamiliar with bonded force fields. The type label framework has the potential to streamline modeling workflows that use LAMMPS by increasing the portability of software, files, and scripts for preprocessing, running, and postprocessing a molecular simulation.
more »
« less
High-Order Ab Initio Valence Force Field with Chemical Pattern-Based Parameter Assignment
Bonded interactions are fundamental ingredients of molecular mechanics force fields because they directly determine the local structure of a molecule. In this work, we parametrize the advanced bonded energy functionals that consider the vibrational anharmonicity, the coupling effects, and the out-of-plane bending for sp2-hybridized atoms. It is expected that these models can describe the spectroscopic properties and overall structures of a molecule more accurately when they are used with polarizable AMOEBA-based force fields.
more »
« less
- Award ID(s):
- 1856173
- PAR ID:
- 10327042
- Date Published:
- Journal Name:
- Journal of Computational Biophysics and Chemistry
- Volume:
- 21
- Issue:
- 04
- ISSN:
- 2737-4165
- Page Range / eLocation ID:
- 431 to 447
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electrostatic interactions are fundamental to biomolecular structure, stability, and function. While these interactions are traditionally modeled using fixed-charge force fields, such approaches are not transferable among di↵erent molecular environments. Polarizable force fields, such as DRUDE, address this limitation by explicitly incorpo- rating polarization e↵ect. However, their performance does not uniformly surpass that of nonpolarizable force fields, since multiple factors such as bonded terms, dihedral correction maps, and solvent screening also modulate biomolecular dynamics. In this work, we study the Im7 protein to evaluate the structural and dynamic behaviors of non-polarizable (CHARMM36m) and polarizable (DRUDE2019) force fields relative to NMR experiments. Our simulations show that DRUDE better stabilizes ↵-helices than CHARMM36m, including shorter ones that contain helix-breaking residues. However, both force fields underestimate loop dynamics, particularly in the loop I region, mainly due to restricted dihedral angle sampling. Moreover, salt bridge analysis reveals that DRUDE and CHARMM36m preferentially stabilize di↵erent salt bridges, driven by ionic interactions, charge screening by the environment, and neighboring residue flex- ibility Additionally, the latest DRUDE2019 variant, featuring updated NBFIX and NBTHOLE parameters for ion-protein interactions, demonstrated improved accuracy in modeling Na+-protein interactions. These findings are further supported by simu- lations of CBD1, a protein with a -sheet and flexible loops, which exhibited similar trends of stable structured regions and restricted loop dynamics across both force fields. These findings highlight the need to balance bonded and non-bonded interactions along with dihedral correction maps while incorporating polarization e↵ects to improve the accuracy of force fields to model protein structure and dynamics.more » « less
-
Given the piecewise approach to modeling intermolecular interactions for force fields, they can be difficult to parameterize since they are fit to data like total energies that only indirectly connect to their separable functional forms. Furthermore, by neglecting certain types of molecular interactions such as charge penetration and charge transfer, most classical force fields must rely on, but do not always demonstrate, how cancellation of errors occurs among the remaining molecular interactions accounted for such as exchange repulsion, electrostatics, and polarization. In this work we present the first generation of the (many-body) MB-UCB force field that explicitly accounts for the decomposed molecular interactions commensurate with a variational energy decomposition analysis, including charge transfer, with force field design choices that reduce the computational expense of the MB-UCB potential while remaining accurate. We optimize parameters using only single water molecule and water cluster data up through pentamers, with no fitting to condensed phase data, and we demonstrate that high accuracy is maintained when the force field is subsequently validated against conformational energies of larger water cluster data sets, radial distribution functions of the liquid phase, and the temperature dependence of thermodynamic and transport water properties. We conclude that MB-UCB is comparable in performance to MB-Pol, but is less expensive and more transferable by eliminating the need to represent short-ranged interactions through large parameter fits to high order polynomialsmore » « less
-
Abstract Ultrafast folding proteins have become an important paradigm in the study of protein folding dynamics. Due to their low energetic barriers and fast kinetics, they are amenable for study by both experiment and simulation. However, single molecule force spectroscopy experiments on these systems are challenging as these proteins do not provide the mechanical fingerprints characteristic of more mechanically stable proteins, which makes it difficult to extract information about the folding dynamics of the molecule. Here, we investigate the unfolding of the ultrafast protein Engrailed Homeodomain (EnHD) by single-molecule atomic force microscopy experiments. Constant speed experiments on EnHD result in featureless transitions typical of compliant proteins. However, in the force-ramp mode we recover sigmoidal curves that we interpret as a very compliant protein that folds and unfolds many times over a marginal barrier. This is supported by a simple theoretical model and coarse-grained molecular simulations. Our results show the ability of force to modulate the unfolding dynamics of ultrafast folding proteins.more » « less
-
ABSTRACT Using first-principles calculations and crystal structure search methods, we found that many covalently bonded molecules such as H2, N2, CO2, NH3, H2O and CH4 may react with NaCl, a prototype ionic solid, and form stable compounds under pressure while retaining their molecular structure. These molecules, despite whether they are homonuclear or heteronuclear, polar or non-polar, small or large, do not show strong chemical interactions with surrounding Na and Cl ions. In contrast, the most stable molecule among all examples, N2, is found to transform into cyclo-N5− anions while reacting with NaCl under high pressures. It provides a new route to synthesize pentazolates, which are promising green energy materials with high energy density. Our work demonstrates a unique and universal hybridization propensity of covalently bonded molecules and solid compounds under pressure. This surprising miscibility suggests possible mixing regions between the molecular and rock layers in the interiors of large planets.more » « less
An official website of the United States government

