skip to main content


Title: A Review: Recent Progress in the Design and Development of Nonlinear Radars
This paper presents an extensive review of nonlinear response-based radar systems. Nonlinear radars are generally used for clutter suppression purposes. These radars detect the nonlinear response generated by diodes and transistors are used as a tag for target localization. Utilizing the nonlinearity properties of these devices, these radars have been used for purposes including locating humans trapped in earthquakes and avalanches, identifying migratory patterns of animals, examining the flight pattern of bees, and detecting bugs in electronic devices. This paper covers the utilization of these radars in human vital signs monitoring, detecting targets in a clutter-rich environment, etc. State-of-the-art nonlinear radars’ high-level architectures, design challenges, and limitations are discussed here. Recent works and results obtained by the authors are also summarized.  more » « less
Award ID(s):
1808613 2030094
NSF-PAR ID:
10327052
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
24
ISSN:
2072-4292
Page Range / eLocation ID:
4982
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrasonic bat detectors are useful for research and monitoring purposes to assess occupancy and relative activity of bat communities. Environmental “clutter” such as tree boles and foliage can affect the recording quality and identification of bat echolocation calls collected using ultrasonic detectors. It can also affect the transmission of calls and recognition by bats when using acoustic lure devices to attract bats to mist-nets. Bat detectors are often placed in forests, yet automatic identification programs are trained on call libraries using echolocation passes recorded largely from open spaces. Research indicates that using clutter-recorded calls can increase classification accuracy for some bat species and decrease accuracy for others, but a detailed understanding of how clutter impacts the recording and identification of echolocation calls remains elusive. To clarify this, we experimentally investigated how two measures of clutter (i.e., total basal area and number of stems of simulated woody growth, as well as recording angle) affected the recording and classification of a synthesized echolocation signal under controlled conditions in an anechoic chamber. Recording angle (i.e., receiver position relative to emitter) significantly influenced the probability of correct classification and differed significantly for many of the call parameters measured. The probability of recording echo pulses was also a function of clutter but only for the detector angle at 0° from the emitter that could receive deflected pulses. Overall, the two clutter metrics were overshadowed by proximity and angle of the receiver to the sound source but some deviations from the synthesized call in terms of maximum, minimum, and mean frequency parameters were observed. Results from our work may aid efforts to better understand underlying environmental conditions that produce false-positive and -negative identifications for bat species of interest and how this could be used to adjust survey accuracy estimates. Our results also help pave the way for future research into the development of acoustic lure technology by exploring the effects of environmental clutter on ultrasound transmission. 
    more » « less
  2. Abstract

    The Sun was remarkably active during the first week of September 2017 producing numerous solar flares, solar radiation storms, and coronal mass ejections. This activity caused disruption to terrestrial high‐frequency (HF, 3–30 MHz) radio communication channels including observations with the Super Dual Auroral Radar Network (SuperDARN) HF radars. In this paper, we analyze the response of SuperDARN groundscatter observations and decreases in background sky noise level in response to multiple solar flares occurring in quick succession and co‐occurring with solar energetic protons and auroral activity. We estimate the attenuation in HF signal strength using an approach similar to riometry and find that the radars exhibit a nonlinear response to compound solar flare events. Additionally, we find that the three different space weather drivers have varying degrees of influence on the HF signal properties at different latitudes. Our study demonstrates that in addition to monitoring high‐latitude convection, SuperDARN observations can be used to study the spatiotemporal evolution of disruption to HF communication during extreme space weather conditions.

     
    more » « less
  3. Data about users is collected constantly by phones, cameras, Internet websites, and others. The advent of so-called ‘Smart Things’ now enable ever-more sensitive data to be collected inside that most private of spaces: the home. The first step in helping users regain control of their information (inside their home) is to alert them to the presence of potentially unwanted electronics. In this paper, we present a system that could help homeowners (or home dwellers) find electronic devices in their living space. Specifically, we demonstrate the use of harmonic radars (sometimes called nonlinear junction detectors), which have also been used in applications ranging from explosives detection to insect tracking. We adapt this radar technology to detect consumer electronics in a home setting and show that we can indeed accurately detect the presence of even ‘simple’ electronic devices like a smart lightbulb. We evaluate the performance of our radar in both wired and over-the-air transmission scenarios. 
    more » « less
  4. In this paper, we propose a novel 77 GHz automotive radar sensor, and demonstrate its cyberattack resilience using real measurements. The proposed system is built upon a standard Frequency Modulated Continuous Wave (FMCW) radar RF-front end, and the novelty is in the DSP algorithm used at the firmware level. All attack scenarios are based on real radar signals generated by Texas Instruments AWR series 77 GHz radars, and all measurements are done using the same radar family. For sensor networks, including interconnected autonomous vehicles sharing radar measurements, cyberattacks at the network/communication layer is a known critical problem, and has been addressed by several different researchers. What is addressed in this paper is cyberattacks at the physical layer, that is, adversarial agents generating 77 GHz electromagnetic waves which may cause a false target detection, false distance/velocity estimation, or not detecting an existing target. The main algorithm proposed in this paper is not a predictive filtering based cyberattack detection scheme where an “unusual” difference between measured and predicted values triggers an alarm. The core idea is based on a kind of physical challenge-response authentication, and its integration into the radar DSP firmware. 
    more » « less
  5. Abstract—Robotic geo-fencing and surveillance systems require accurate monitoring of objects if/when they violate perimeter restrictions. In this paper, we seek a solution for depth imaging of such objects of interest at high accuracy (few tens of cm) over extended ranges (up to 300 meters) from a single vantage point, such as a pole mounted platform. Unfortunately, the rich literature in depth imaging using camera, lidar and radar in isolation struggles to meet these tight requirements in real-world conditions. This paper proposes Metamoran, a solution that explores long-range depth imaging of objects of interest by fusing the strengths of two complementary technologies: mmWave radar and camera. Unlike cameras, mmWave radars offer excellent cm-scale depth resolution even at very long ranges. However, their angular resolution is at least 10× worse than camera systems. Fusing these two modalities is natural, but in scenes with high clutter and at long ranges, radar reflections are weak and experience spurious artifacts. Metamoran’s core contribution is to leverage image segmentation and monocular depth estimation on camera images to help declutter radar and discover true object reflections.We perform a detailed evaluation of Metamoran’s depth imaging capabilities in 400 diverse scenarios. Our evaluation shows that Metamoran estimates the depth of static objects up to 90 m away and moving objects up to 305 m away and with a median error of 28 cm, an improvement of 13× over a naive radar+camera baseline and 23× compared to monocular depth estimation. 
    more » « less