In plant cells, vacuoles are extremely important for growth and development, and influence important cellular functions as photosynthesis, respiration, and transpiration. Plant cells contain lytic and storage vacuoles, whose size can be different depending on cell type and tissue developmental stage. One of the main roles of vacuoles is to regulate the cell turgor in response to different stimuli. Thus, studying the morphology, dynamics, and physiology of vacuole is fundamentally important to advance knowledge in plant cell biology at large. The availability of fluorescent probes allows marking vacuoles in multiple ways. These may be fast, when using commercially available chemical dyes, or relatively slow, in the case of specific genetically encoded markers based on proteins directed either to the membrane of the vacuole (tonoplast) or to the vacuole lumen. Any of these approaches provides useful information about the morphology and physiology of the vacuole.
more »
« less
Yeast cells actively tune their membranes to phase separate at temperatures that scale with growth temperatures
Membranes of vacuoles, the lysosomal organelles of Saccharomyces cerevisiae (budding yeast), undergo extraordinary changes during the cell’s normal growth cycle. The cycle begins with a stage of rapid cell growth. Then, as glucose becomes scarce, growth slows, and vacuole membranes phase separate into micrometer-scale domains of two liquid phases. Recent studies suggest that these domains promote yeast survival by organizing membrane proteins that play key roles in a central signaling pathway conserved among eukaryotes (TORC1). An outstanding question in the field has been whether cells regulate phase transitions in response to new physical conditions and how this occurs. Here, we measure transition temperatures and find that after an increase of roughly 15 °C, vacuole membranes appear uniform, independent of growth temperature. Moreover, populations of cells grown at a single temperature regulate this transition to occur over a surprisingly narrow temperature range. Remarkably, the transition temperature scales linearly with the growth temperature, demonstrating that the cells physiologically adapt to maintain proximity to the transition. Next, we ask how yeast adjust their membranes to achieve phase separation. We isolate vacuoles from yeast during the rapid stage of growth, when their membranes do not natively exhibit domains. Ergosterol is the major sterol in yeast. We find that domains appear when ergosterol is depleted, contradicting the prevalent assumption that increases in sterol concentration generally cause membrane phase separation in vivo, but in agreement with previous studies using artificial and cell-derived membranes.
more »
« less
- Award ID(s):
- 1925731
- PAR ID:
- 10327090
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 4
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sterols are among the most abundant lipids in eukaryotic cells yet are synthesized through notoriously long metabolic pathways. It has been proposed that the molecular evolution of such pathways must have required each step to increase the capacity of its product to condense and order phospholipids. Here, we carry out a systematic analysis of the ergosterol pathway that leverages the yeast vacuole’s capacity to phase separate into ordered membrane domains. In the post-synthetic steps specific to ergosterol biosynthesis, we find that successive modifications act to oscillate ordering capacity, settling on a level that supports phase separation while retaining fluidity of the resulting domains. Simulations carried out with each intermediate showed how conformers in the sterol’s alkyl tail are capable of modulating long-range ordering of phospholipids, which could underlie changes in phase behavior. Our results indicate that the complexity of sterol metabolism could have resulted from the need to balance lipid interactions required for membrane organization.more » « less
-
Sphingolipids are essential in membrane trafficking and cellular homeostasis. Here, we show that sphingolipids containing very long-chain fatty acids (VLCFAs) promote homotypic vacuolar fusion in Saccharomyces cerevisiae. The elongase Elo3 adds the last two carbons to VLCFAs that are incorporated into sphingolipids. Cells lacking Elo3 have fragmented vacuoles, which is also seen when WT cells are treated with the sphingolipid synthesis inhibitor Aureobasidin-A. Isolated elo3Δ vacuoles show acidification defects and increased membrane fluidity, and this correlates with deficient fusion. Fusion arrest occurs at the tethering stage as elo3Δ vacuoles fail to cluster efficiently in vitro. Unlike HOPS and fusogenic lipids, GFP-Ypt7 does not enrich at elo3Δ vertex microdomains, a hallmark of vacuole docking prior to fusion. Pulldown assays using bacterially expressed GST-Ypt7 showed that HOPS from elo3Δ vacuole extracts failed to bind GST-Ypt7 while HOPS from WT extracts interacted strongly with GST-Ypt7. Treatment of WT vacuoles with the fluidizing anesthetic dibucaine recapitulates the elo3Δ phenotype and shows increased membrane fluidity, mislocalized GFP-Ypt7, inhibited fusion, and attenuated acidification. Together these data suggest that sphingolipids contribute to Rab-mediated tethering and docking required for vacuole fusion.more » « less
-
Several groups have recently reported evidence for the emergence of domains in cell plasma membranes when membrane proteins are organized by ligand binding or assembly of membrane proximal scaffolds. These domains recruit and retain components that favor the liquid-ordered phase, adding to a decades-old literature interrogating the contribution of membrane phase separation in plasma membrane organization and function. Here we propose that both past and present observations are consistent with a model in which membranes have a high compositional susceptibility, arising from their thermodynamic state in a single phase that is close to a miscibility phase transition. This rigorous framework naturally allows for both transient structure in the form of composition fluctuations and long-lived structure in the form of induced domains. In this way, the biological tuning of plasma membrane composition enables a responsive compositional landscape that facilitates and augments cellular biochemistry vital to plasma membrane functions.more » « less
-
Abstract Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.more » « less