Abstract We investigate a P 1 P_{1} finite element method for an elliptic distributed optimal control problem with pointwise state constraints and a state equation that includes advective/convective and reactive terms.The convergence of this method can be established for general polygonal/polyhedral domains that are not necessarily convex.The discrete problem is a strictly convex quadratic program with box constraints that can be solved efficiently by a primal-dual active set algorithm.
more »
« less
Feasibility Governor for Linear Model Predictive Control
This paper introduces the Feasibility Governor (FG): an add-on unit that enlarges the region of attraction of Model Predictive Control by manipulating the reference to ensure that the underlying optimal control problem remains feasible. The FG is developed for linear systems subject to polyhedral state and input constraints. Offline computations using polyhedral projection algorithms are used to construct the feasibility set. Online implementation relies on the solution of a convex quadratic program that guarantees recursive feasibility. The closed-loop system is shown to satisfy constraints, achieve asymptotic stability, and exhibit zero-offset tracking.
more »
« less
- Award ID(s):
- 1904394
- PAR ID:
- 10327221
- Date Published:
- Journal Name:
- Proceedings of 2021 American Control Conference, New Orleans, USA
- Page Range / eLocation ID:
- 2329 to 2335
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The recent development of three-dimensional graphic statics using polyhedral reciprocal diagrams (PGS) has greatly increased the ease of designing complex yet efficient spatial funicular structural forms, where the inherent planarity of the polyhedral geometries can be harnessed for efficient construction processes. Our previous research has shown the feasibility of leveraging this planarity in materializing a 10m-span, double-layer glass bridge made of 1cm glass sheets. This paper presents a smaller bridge prototype with a span of 2.5m to address the larger bridgeās challenges regarding form-finding, detail developments, fabrication constraints, and assembly logic. The compression-only prototype is designed for prefabrication as a modular system using PolyFrame for Rhinoceros. Thirteen polyhedral cells of the funicular bridge are materialized in the form of hollow glass units (HGUs) and can be prefabricated and assembled on-site. Each HGU consists of two deck plates and multiple side plates held together using 3M⢠Very High Bond (VHB) tape. A male-female glass connection mechanism is developed at the sides of HGUs to interlock each unit with its adjacent cells to prevent sliding. A transparent interface material is placed between the male and female connecting parts to avoid local stress concentration. This novel construction method significantly simplifies the bridgeās assembly on a large scale. The design and construction of this small-scale prototype set the foundation for the future development of the full-scale structure.more » « less
-
Abstract In adverse environments, the number of fertilizable female gametophytes (FGs) in plants is reduced, leading to increased survival of the remaining offspring. How the maternal plant perceives internal growth cues and external stress conditions to alter FG development remains largely unknown. We report that homeostasis of the stress signaling molecule nitric oxide (NO) plays a key role in controlling FG development under both optimal and stress conditions. NO homeostasis is precisely regulated by S-nitrosoglutathione reductase (GSNOR). Prior to fertilization, GSNOR protein is exclusively accumulated in sporophytic tissues and indirectly controls FG development in Arabidopsis (Arabidopsis thaliana). In GSNOR null mutants, NO species accumulated in the degenerating sporophytic nucellus, and auxin efflux into the developing FG was restricted, which inhibited FG development, resulting in reduced fertility. Importantly, restoring GSNOR expression in maternal, but not gametophytic tissues, or increasing auxin efflux substrate significantly increased the proportion of normal FGs and fertility. Furthermore, GSNOR overexpression or added auxin efflux substrate increased fertility under drought and salt stress. These data indicate that NO homeostasis is critical to normal auxin transport and maternal control of FG development, which in turn determine seed yield. Understanding this aspect of fertility control could contribute to mediating yield loss under adverse conditions.more » « less
-
Modern polyhedral compilers excel at aggressively optimizing codes with static control parts, but the state-of-practice to find high-performance polyhedral transformations especially for different hardware targets still largely involves auto-tuning. In this work we propose a novel customizable polyhedral scheduling technique, with the aim of delivering high performance for several hardware targets. We design constraints and objectives that model several crucial aspects of performance such as stride optimization or the trade-off between parallelism and reuse, while considering important architectural features of the target machine. We evaluate our work using the PolyBench/C benchmark suite and experimentally validate it against large optimization spaces generated with the Pluto compiler on 3 representative architectures: an IBM Power9, an Intel Xeon Phi and an Intel Core-i9. Our results show we can achieve comparable or superior performance to Pluto on the majority of benchmarks, without implementing tiling in the source code nor using experimental autotuning.more » « less
-
In this article, we consider the problem of reachable set computation of a closed-loop system with anytime sensor and a neural network controller. We provide a star set data structure-based forward propagation algorithm that uses existing efficient operations on star-sets and a novel convex hull construction. We present rigorous analysis of the space-complexity of the star sets generated during the propagation. Our experimental results show significant improvement with respect to existing methods that use vertex-based representation of polyhedral sets for propagation through closed-loop systems with anytime sensing, as well as the feasibility of the approach on different types of dynamics, control and sensors.more » « less
An official website of the United States government

