Unmanned aerial vehicles (UAVs) are becoming more common, presenting the need for effective human-robot communication strategies that address the unique nature of unmanned aerial flight. Visual communication via drone flight paths, also called gestures, may prove to be an ideal method. However, the effectiveness of visual communication techniques is dependent on several factors including an observer's position relative to a UAV. Previous work has studied the maximum line-of-sight at which observers can identify a small UAV [1]. However, this work did not consider how changes in distance may affect an observer's ability to perceive the shape of a UAV's motion. In this study, we conduct a series of online surveys to evaluate how changes in line-of-sight distance and gesture size affect observers' ability to identify and distinguish between UAV gestures. We first examine observers' ability to accurately identify gestures when adjusting a gesture's size relative to the size of a UAV. We then measure how observers' ability to identify gestures changes with respect to varying line-of-sight distances. Lastly, we consider how altering the size of a UAV gesture may improve an observer's ability to identify drone gestures from varying distances. Our results show that increasing the gesture size across varying UAV to gesture ratios did not have a significant effect on participant response accuracy. We found that between 17 m and 75 m from the observer, their ability to accurately identify a drone gesture was inversely proportional to the distance between the observer and the drone. Finally, we found that maintaining a gesture's apparent size improves participant response accuracy over changing line-of-sight distances.
more »
« less
UAVs Control Using 3D Hand Keypoint Gestures
Over past few years, unmanned aircraft vehicles (UAVs) have been becoming more and more popular for various purposes such as surveillance, automated industry, robotics, vehicle guidance, traffic monitoring and control system. It is very important to have multiple methods of UAVs controlling to fit in UAVs usages. The goal of this work was to develop a new technique to control an UAV by using different hand gestures. To achieve this, a hand keypoint detection algorithm was used to detect 21 keypoints in the hand. Then this keypoints were used as the input to an intelligent system based on Convolutional Neural Networks (CNN) that was able to classify the hand gestures. To capture the hand gestures, the video camera of the UAV was used. A database containing 2400 hand images was created and used to train the CNN. The database contained 8 different hand gestures that were selected to send specific motion commands to the UAV. The accuracy of the CNN to classify the hand gestures was 93%. To test the capabilities of our intelligent control system, a small UAV, the DJI Ryze Tello drone, was used. The experimental results demonstrated that the DJI Tello drone was able to be successfully controlled by hand gestures in real time.
more »
« less
- Award ID(s):
- 1950207
- PAR ID:
- 10327233
- Editor(s):
- IEEE
- Date Published:
- Journal Name:
- SoutheastCon 2022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper investigates the ability of a relatively low cost, commercially available uncrewed aerial vehicle (UAV), the DJI Mavic 3 Multispectral, to perform cryospheric research. The performance of this UAV, where applicable, is compared to a similar but higher cost system, the DJI Matrice 350, equipped with a Micasense RedEdge-MX Multispectral dual-camera system. The Mavic 3 Multispectral was tested at three field sites: the Lemon Creek Glacier, Juneau Icefield, AK; the Easton Glacier, Mt. Baker, WA; and Bagley Basin, Mt. Baker, WA. This UAV proved capable of mapping the spatial distribution of red snow algae on the surface of the Lemon Creek Glacier using both spectral indices and a random forest supervised classification method. The UAV was able to assess the timing of snowmelt and changes in suncup morphology on snow-covered areas within the Bagley Basin. Finally, the UAV was able to classify glacier surface features using a random forest algorithm with an overall accuracy of 68%. The major advantages of this UAV are its low weight, which allows it to be easily transported into the field, its low cost compared to other alternatives, and its ease of use. One limitation would be the omission of a blue multispectral band, which would have allowed it to more easily classify glacial ice and snow features.more » « less
-
Pavement surveying and distress mapping is completed by roadway authorities to quantify the topical and structural damage levels for strategic preventative or rehabilitative action. The failure to time the preventative or rehabilitative action and control distress propagation can lead to severe structural and financial loss of the asset requiring complete reconstruction. Continuous and computer-aided surveying measures not only can eliminate human error when analyzing, identifying, defining, and mapping pavement surface distresses, but also can provide a database of road damage patterns and their locations. The database can be used for timely road repairs to gain the maximum durability of the asphalt and the minimum cost of maintenance. This paper introduces an autonomous surveying scheme to collect, analyze, and map the image-based distress data in real time. A descriptive approach is considered for identifying cracks from collected images using a convolutional neural network (CNN) that classifies several types of cracks. Typically, CNN-based schemes require a relatively large processing power to detect desired objects in images in real time. However, the portability objective of this work requires to utilize low-weight processing units. To that end, the CNN training was optimized by the Bayesian optimization algorithm (BOA) to achieve the maximum accuracy and minimum processing time with minimum neural network layers. First, a database consisting of a diverse population of crack distress types such as longitudinal, transverse, and alligator cracks, photographed at multiple angles, was prepared. Then, the database was used to train a CNN whose hyperparameters were optimized using BOA. Finally, a heuristic algorithm is introduced to process the CNN’s output and produce the crack map. The performance of the classifier and mapping algorithm is examined against still images and videos captured by a drone from cracked pavement. In both instances, the proposed CNN was able to classify the cracks with 97% accuracy. The mapping algorithm is able to map a diverse population of surface cracks patterns in real time at the speed of 11.1 km per hour.more » « less
-
The popularity of small consumer drones (UAVs) has prompted increased use of these vehicles in and around public outdoor spaces, with expected commercial drone numbers to reach nearly 7 million by 2030 (FAA). Research in landscape architecture related to UAV (drone) use in public space to date, has just begun to address conceptual approaches to landscape assessment, representation, and park user behavior (Kullmann, Park). While research related to the development of countermeasures for security purposes is more extensive, no research to date addresses the development of landscape countermeasures for the use of UAVs in criminal activities. The paper presents design-based research (DBR) methodology and findings funded by a multiyear, multidisciplinary NSF grant to develop landscape architectural interventions that discourage the use of UAVs for criminal purposes at correctional facilities. Consistent with design based research (DBR) models (Brown), this project is complex, incorporating the development of a) landscape assessments for potential UAV launch and landing sites around prisons; b) the creation of UAV tracking and monitoring systems, and c) the development of model countermeasures. The paper describes design and placement of embedded landscape features utilizing landscape camouflage principles for UAV detection systems in forested upstate North Carolina. Modelled camouflage mimicked landscape features and were fabricated in two stages: 1) landscape superstructure, and 2) landscape camouflage. The embedded landscape features incorporated a launch warning system capable of alerting prison officials of drone launch locations, identifying future drone operators, and predicting drone flight paths. Keywords:more » « less
-
The popularity of small consumer drones (UAVs) has prompted increased use of these vehicles in and around public outdoor spaces, with expected commercial drone numbers to reach nearly 7 million by 2030 (FAA). Research in landscape architecture related to UAV (drone) use in public space to date, has just begun to address conceptual approaches to landscape assessment, representation, and park user behavior (Kullmann, Park). While research related to the development of countermeasures for security purposes is more extensive, no research to date addresses the development of landscape countermeasures for the use of UAVs in criminal activities. The paper presents design-based research (DBR) methodology and findings funded by a multiyear, multidisciplinary NSF grant to develop landscape architectural interventions that discourage the use of UAVs for criminal purposes at correctional facilities. Consistent with design based research (DBR) models (Brown), this project is complex, incorporating the development of a) landscape assessments for potential UAV launch and landing sites around prisons; b) the creation of UAV tracking and monitoring systems, and c) the development of model countermeasures. The paper describes design and placement of embedded landscape features utilizing landscape camouflage principles for UAV detection systems in forested upstate North Carolina. Modelled camouflage mimicked landscape features and were fabricated in two stages: 1) landscape superstructure, and 2) landscape camouflage. The embedded landscape features incorporated a launch warning system capable of alerting prison officials of drone launch locations, identifying future drone operators, and predicting drone flight paths.more » « less