skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applicability of Relatively Low-Cost Multispectral Uncrewed Aerial Systems for Surface Characterization of the Cryosphere
This paper investigates the ability of a relatively low cost, commercially available uncrewed aerial vehicle (UAV), the DJI Mavic 3 Multispectral, to perform cryospheric research. The performance of this UAV, where applicable, is compared to a similar but higher cost system, the DJI Matrice 350, equipped with a Micasense RedEdge-MX Multispectral dual-camera system. The Mavic 3 Multispectral was tested at three field sites: the Lemon Creek Glacier, Juneau Icefield, AK; the Easton Glacier, Mt. Baker, WA; and Bagley Basin, Mt. Baker, WA. This UAV proved capable of mapping the spatial distribution of red snow algae on the surface of the Lemon Creek Glacier using both spectral indices and a random forest supervised classification method. The UAV was able to assess the timing of snowmelt and changes in suncup morphology on snow-covered areas within the Bagley Basin. Finally, the UAV was able to classify glacier surface features using a random forest algorithm with an overall accuracy of 68%. The major advantages of this UAV are its low weight, which allows it to be easily transported into the field, its low cost compared to other alternatives, and its ease of use. One limitation would be the omission of a blue multispectral band, which would have allowed it to more easily classify glacial ice and snow features.  more » « less
Award ID(s):
2218834
PAR ID:
10568861
Author(s) / Creator(s):
;
Publisher / Repository:
Remote Sensing
Date Published:
Journal Name:
Remote Sensing
Volume:
16
Issue:
19
ISSN:
2072-4292
Page Range / eLocation ID:
3662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the dynamic response of glaciers to climate change is vital for assessing water resources and hazards, and subglacial hydrology is a key player in glacier systems. Traditional observations of subglacial hydrology are spatially and temporally limited, but recent seismic deployments on and around glaciers show the potential for comprehensive observation of glacial hydrologic systems. We present results from a high‐density seismic deployment spanning the surface of Lemon Creek Glacier, Alaska. Our study coincided with a marginal lake drainage event, which served as a natural experiment for seismic detection of changes in subglacial hydrology. We observed glaciohydraulic tremor across the surface of the glacier that was generated by the subglacial hydrologic system. During the lake drainage, the relative changes in seismic tremor power and water flux are consistent with pressurization of the subglacial system of only the upper part of the glacier. This event was not accompanied by a significant increase in glacier velocity; either some threshold necessary for rapid basal motion was not attained, or, plausibly, the geometry of Lemon Creek Glacier inhibited speedup. This pressurization event would have likely gone undetected without seismic observations, demonstrating the power of cryoseismology in testing assumptions about and mapping the spatial extent of subglacial pressurization. 
    more » « less
  2. Abstract Snow algae are ubiquitous in the Pacific Northwest cryosphere in the summer where snowmelt is an important contribution to regional watersheds. However, less attention has been given to biological impurities as drivers of snowmelt compared to inorganic light-absorbing particles. Here we map snow algae near Mt. Baker with a multispectral camera on an uncrewed aerial vehicle using (1) principal components and (2) spectral indexing. The two approaches are tested under differing bloom states and verified with coincident algal pigment and cell count data. During high bloom intensity we found an average instantaneous radiative forcing of 237 W m−2with a maximum of 360 W m−2. This translated to 1,508 ± 536 m3of melted snow water equivalent in the 0.1 km2basin. These results demonstrate snow algae contribute to snowmelt at mid-latitudes and the potential for uncrewed autonomous vehicles to map snow algae over expansive areas of the cryosphere. 
    more » « less
  3. ### Access Dataset can be accessed and downloaded from the directory via: [http://arcticdata.io/data/10.18739/A2736M42V](http://arcticdata.io/data/10.18739/A2736M42V). ### Overview This data set includes imagery collected using Uncrewed Aerial Vehicles (UAV, i.e. drones) for a series of research sites in interior Alaska with the objective of mapping the distribution of individual plants (e.g. Eriophorum vaginatum tussocks) and other similarly sized ecosystem components. Data was collected in the summer of 2024 using a DJI Mavic 3 Enterprise quadcopter with integrated multispectral and rgb sensors. The majority of the imagery focuses on study sites within the National Ecological Observatory Network (NEON) site near Healy, Alaska. The data set also includes a small amount of ground truth data on tussock dimensions for these sites. Additional images include a series of riparian corridors with beaver wetlands along the Denali and Steese Highways. 
    more » « less
  4. IEEE (Ed.)
    Over past few years, unmanned aircraft vehicles (UAVs) have been becoming more and more popular for various purposes such as surveillance, automated industry, robotics, vehicle guidance, traffic monitoring and control system. It is very important to have multiple methods of UAVs controlling to fit in UAVs usages. The goal of this work was to develop a new technique to control an UAV by using different hand gestures. To achieve this, a hand keypoint detection algorithm was used to detect 21 keypoints in the hand. Then this keypoints were used as the input to an intelligent system based on Convolutional Neural Networks (CNN) that was able to classify the hand gestures. To capture the hand gestures, the video camera of the UAV was used. A database containing 2400 hand images was created and used to train the CNN. The database contained 8 different hand gestures that were selected to send specific motion commands to the UAV. The accuracy of the CNN to classify the hand gestures was 93%. To test the capabilities of our intelligent control system, a small UAV, the DJI Ryze Tello drone, was used. The experimental results demonstrated that the DJI Tello drone was able to be successfully controlled by hand gestures in real time. 
    more » « less
  5. Abstract Lemon Creek Glacier, a temperate valley glacier in the Juneau Icefield of Southeast Alaska, is the site of long running (>60 years) glaciological studies. However, the most recent published estimates of its thickness and subglacial topography come from two ~50 years old sources that are not in agreement and do not account for the effects of years of negative mass balance. We collected a 1-km long active-source seismic line on the upper section of the glacier parallel and near to the centerline of the glacier, roughly straddling the equilibrium-line altitude. We used these data to perform joint reflection-refraction velocity modeling and reflection imaging of the glacier bed. We find that this upper section of Lemon Creek Glacier is as much as 150 m (~65%) thicker than previously suggested with a large overdeepening in an area previously believed to have a uniform thickness. Our results lead us to reinterpret the impact of basal motion on ice flow and have a significant impact on expectations of subglacial hydrology. We suggest that further efforts to develop a whole-glacier model of subglacial topography are necessary to support studies that require accurate models of ice thickness and subglacial topography. 
    more » « less