skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Bayesian Instability of Optical Imaging: Ill Conditioning of Inverse Linear and Nonlinear Radiative Transfer Equation in the Fluid Regime
For the inverse problem in physical models, one measures the solution and infers the model parameters using information from the collected data. Oftentimes, these data are inadequate and render the inverse problem ill-posed. We study the ill-posedness in the context of optical imaging, which is a medical imaging technique that uses light to probe (bio-)tissue structure. Depending on the intensity of the light, the forward problem can be described by different types of equations. High-energy light scatters very little, and one uses the radiative transfer equation (RTE) as the model; low-energy light scatters frequently, so the diffusion equation (DE) suffices to be a good approximation. A multiscale approximation links the hyperbolic-type RTE with the parabolic-type DE. The inverse problems for the two equations have a multiscale passage as well, so one expects that as the energy of the photons diminishes, the inverse problem changes from well- to ill-posed. We study this stability deterioration using the Bayesian inference. In particular, we use the Kullback–Leibler divergence between the prior distribution and the posterior distribution based on the RTE to prove that the information gain from the measurement vanishes as the energy of the photons decreases, so that the inverse problem is ill-posed in the diffusive regime. In the linearized setting, we also show that the mean square error of the posterior distribution increases as we approach the diffusive regime.  more » « less
Award ID(s):
1846854 1750488
NSF-PAR ID:
10327298
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Computation
Volume:
10
Issue:
2
ISSN:
2079-3197
Page Range / eLocation ID:
15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical tomography is the process of reconstructing the optical properties of biological tissue using measurements of incoming and outgoing light intensity at the tissue boundary. Mathematically, light propagation is modeled by the radiative transfer equation (RTE), and optical tomography amounts to reconstructing the scattering coefficient in the RTE using the boundary measurements. In the strong scattering regime, the RTE is asymptotically equivalent to the diffusion equation (DE), and the inverse problem becomes reconstructing the diffusion coefficient using Dirichlet and Neumann data on the boundary. We study this problem in the Bayesian framework, meaning that we examine the posterior distribution of the scattering coefficient after the measurements have been taken. However, sampling from this distribution is computationally expensive, since to evaluate each Markov Chain Monte Carlo (MCMC) sample, one needs to run the RTE solvers multiple times. We therefore propose the DE-assisted two-level MCMC technique, in which bad samples are filtered out using DE solvers that are significantly cheaper than RTE solvers. This allows us to make sampling from the RTE posterior distribution computationally feasible. 
    more » « less
  2. n/a (Ed.)
    Bayesian methods have been widely used in the last two decades to infer statistical proper- ties of spatially variable coefficients in partial differential equations from measurements of the solutions of these equations. Yet, in many cases the number of variables used to param- eterize these coefficients is large, and oobtaining meaningful statistics of their probability distributions is difficult using simple sampling methods such as the basic Metropolis– Hastings algorithm—in particular, if the inverse problem is ill-conditioned or ill-posed. As a consequence, many advanced sampling methods have been described in the literature that converge faster than Metropolis–Hastings, for example, by exploiting hierarchies of statistical models or hierarchies of discretizations of the underlying differential equation. At the same time, it remains difficult for the reader of the literature to quantify the advantages of these algorithms because there is no commonly used benchmark. This paper presents a benchmark Bayesian inverse problem—namely, the determination of a spatially variable coefficient, discretized by 64 values, in a Poisson equation, based on point mea- surements of the solution—that fills the gap between widely used simple test cases (such as superpositions of Gaussians) and real applications that are difficult to replicate for de- velopers of sampling algorithms. We provide a complete description of the test case and provide an open-source implementation that can serve as the basis for further experiments. We have also computed 2 × 10^11 samples, at a cost of some 30 CPU years, of the poste- rior probability distribution from which we have generated detailed and accurate statistics against which other sampling algorithms can be tested. 
    more » « less
  3. Elastography is an imaging technique to reconstruct elasticity distributions of heterogeneous objects. Since cancerous tissues are stiffer than healthy ones, for decades, elastography has been applied to medical imaging for noninvasive cancer diagnosis. Although the conventional strain-based elastography has been deployed on ultrasound diagnostic-imaging devices, the results are prone to inaccuracies. Model-based elastography, which reconstructs elasticity distributions by solving an inverse problem in elasticity, may provide more accurate results but is often unreliable in practice due to the ill-posed nature of the inverse problem. We introduce ElastNet, a de novo elastography method combining the theory of elasticity with a deep-learning approach. With prior knowledge from the laws of physics, ElastNet can escape the performance ceiling imposed by labeled data. ElastNet uses backpropagation to learn the hidden elasticity of objects, resulting in rapid and accurate predictions. We show that ElastNet is robust when dealing with noisy or missing measurements. Moreover, it can learn probable elasticity distributions for areas even without measurements and generate elasticity images of arbitrary resolution. When both strain and elasticity distributions are given, the hidden physics in elasticity—the conditions for equilibrium—can be learned by ElastNet.

     
    more » « less
  4. Chemotaxis describes the movement of an organism, such as single or multi-cellular organisms and bacteria, in response to a chemical stimulus. Two widely used models to describe the phenomenon are the celebrated Keller–Segel equation and a chemotaxis kinetic equation. These two equations describe the organism’s movement at the macro- and mesoscopic level, respectively, and are asymptotically equivalent in the parabolic regime. The way in which the organism responds to a chemical stimulus is embedded in the diffusion/advection coefficients of the Keller–Segel equation or the turning kernel of the chemotaxis kinetic equation. Experiments are conducted to measure the time dynamics of the organisms’ population level movement when reacting to certain stimulation. From this, one infers the chemotaxis response, which constitutes an inverse problem. In this paper, we discuss the relation between both the macro- and mesoscopic inverse problems, each of which is associated with two different forward models. The discussion is presented in the Bayesian framework, where the posterior distribution of the turning kernel of the organism population is sought. We prove the asymptotic equivalence of the two posterior distributions. 
    more » « less
  5. The thermal radiative transfer (TRT) equations form an integro-differential system that describes the propagation and collisional interactions of photons. Computing accurate and efficient numerical solutions TRT are challenging for several reasons, the first of which is that TRT is defined on a high-dimensional phase space that includes the independent variables of time, space, and velocity. In order to reduce the dimensionality of the phase space, classical approaches such as the P$_N$ (spherical harmonics) or the S$_N$ (discrete ordinates) ansatz are often used in the literature. In this work, we introduce a novel approach: the hybrid discrete (H$^T_N$) approximation to the radiative thermal transfer equations. This approach acquires desirable properties of both P$_N$ and S$_N$, and indeed reduces to each of these approximations in various limits: H$^1_N$ $\equiv$ P$_N$ and H$^T_0$ $\equiv$ S$_T$. We prove that H$^T_N$ results in a system of hyperbolic partial differential equations for all $T\ge 1$ and $N\ge 0$. Another challenge in solving the TRT system is the inherent stiffness due to the large timescale separation between propagation and collisions, especially in the diffusive (i.e., highly collisional) regime. This stiffness challenge can be partially overcome via implicit time integration, although fully implicit methods may become computationally expensive due to the strong nonlinearity and system size. On the other hand, explicit time-stepping schemes that are not also asymptotic-preserving in the highly collisional limit require resolving the mean-free path between collisions, making such schemes prohibitively expensive. In this work we develop a numerical method that is based on a nodal discontinuous Galerkin discretization in space, coupled with a semi-implicit discretization in time. In particular, we make use of a second order explicit Runge-Kutta scheme for the streaming term and an implicit Euler scheme for the material coupling term. Furthermore, in order to solve the material energy equation implicitly after each predictor and corrector step, we linearize the temperature term using a Taylor expansion; this avoids the need for an iterative procedure, and therefore improves efficiency. In order to reduce unphysical oscillation, we apply a slope limiter after each time step. Finally, we conduct several numerical experiments to verify the accuracy, efficiency, and robustness of the H$^T_N$ ansatz and the numerical discretizations. 
    more » « less