skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian Instability of Optical Imaging: Ill Conditioning of Inverse Linear and Nonlinear Radiative Transfer Equation in the Fluid Regime
For the inverse problem in physical models, one measures the solution and infers the model parameters using information from the collected data. Oftentimes, these data are inadequate and render the inverse problem ill-posed. We study the ill-posedness in the context of optical imaging, which is a medical imaging technique that uses light to probe (bio-)tissue structure. Depending on the intensity of the light, the forward problem can be described by different types of equations. High-energy light scatters very little, and one uses the radiative transfer equation (RTE) as the model; low-energy light scatters frequently, so the diffusion equation (DE) suffices to be a good approximation. A multiscale approximation links the hyperbolic-type RTE with the parabolic-type DE. The inverse problems for the two equations have a multiscale passage as well, so one expects that as the energy of the photons diminishes, the inverse problem changes from well- to ill-posed. We study this stability deterioration using the Bayesian inference. In particular, we use the Kullback–Leibler divergence between the prior distribution and the posterior distribution based on the RTE to prove that the information gain from the measurement vanishes as the energy of the photons decreases, so that the inverse problem is ill-posed in the diffusive regime. In the linearized setting, we also show that the mean square error of the posterior distribution increases as we approach the diffusive regime.  more » « less
Award ID(s):
1846854 1750488
PAR ID:
10327298
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Computation
Volume:
10
Issue:
2
ISSN:
2079-3197
Page Range / eLocation ID:
15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical tomography is the process of reconstructing the optical properties of biological tissue using measurements of incoming and outgoing light intensity at the tissue boundary. Mathematically, light propagation is modeled by the radiative transfer equation (RTE), and optical tomography amounts to reconstructing the scattering coefficient in the RTE using the boundary measurements. In the strong scattering regime, the RTE is asymptotically equivalent to the diffusion equation (DE), and the inverse problem becomes reconstructing the diffusion coefficient using Dirichlet and Neumann data on the boundary. We study this problem in the Bayesian framework, meaning that we examine the posterior distribution of the scattering coefficient after the measurements have been taken. However, sampling from this distribution is computationally expensive, since to evaluate each Markov Chain Monte Carlo (MCMC) sample, one needs to run the RTE solvers multiple times. We therefore propose the DE-assisted two-level MCMC technique, in which bad samples are filtered out using DE solvers that are significantly cheaper than RTE solvers. This allows us to make sampling from the RTE posterior distribution computationally feasible. 
    more » « less
  2. na (Ed.)
    Bayesian methods have been widely used in the last two decades to infer statistical proper- ties of spatially variable coefficients in partial differential equations from measurements of the solutions of these equations. Yet, in many cases the number of variables used to param- eterize these coefficients is large, and oobtaining meaningful statistics of their probability distributions is difficult using simple sampling methods such as the basic Metropolis– Hastings algorithm—in particular, if the inverse problem is ill-conditioned or ill-posed. As a consequence, many advanced sampling methods have been described in the literature that converge faster than Metropolis–Hastings, for example, by exploiting hierarchies of statistical models or hierarchies of discretizations of the underlying differential equation. At the same time, it remains difficult for the reader of the literature to quantify the advantages of these algorithms because there is no commonly used benchmark. This paper presents a benchmark Bayesian inverse problem—namely, the determination of a spatially variable coefficient, discretized by 64 values, in a Poisson equation, based on point mea- surements of the solution—that fills the gap between widely used simple test cases (such as superpositions of Gaussians) and real applications that are difficult to replicate for de- velopers of sampling algorithms. We provide a complete description of the test case and provide an open-source implementation that can serve as the basis for further experiments. We have also computed 2 × 10^11 samples, at a cost of some 30 CPU years, of the poste- rior probability distribution from which we have generated detailed and accurate statistics against which other sampling algorithms can be tested. 
    more » « less
  3. Chemotaxis describes the movement of an organism, such as single or multi-cellular organisms and bacteria, in response to a chemical stimulus. Two widely used models to describe the phenomenon are the celebrated Keller–Segel equation and a chemotaxis kinetic equation. These two equations describe the organism’s movement at the macro- and mesoscopic level, respectively, and are asymptotically equivalent in the parabolic regime. The way in which the organism responds to a chemical stimulus is embedded in the diffusion/advection coefficients of the Keller–Segel equation or the turning kernel of the chemotaxis kinetic equation. Experiments are conducted to measure the time dynamics of the organisms’ population level movement when reacting to certain stimulation. From this, one infers the chemotaxis response, which constitutes an inverse problem. In this paper, we discuss the relation between both the macro- and mesoscopic inverse problems, each of which is associated with two different forward models. The discussion is presented in the Bayesian framework, where the posterior distribution of the turning kernel of the organism population is sought. We prove the asymptotic equivalence of the two posterior distributions. 
    more » « less
  4. Abstract We study Bayesian data assimilation (filtering) for time-evolution Partial differential equations (PDEs), for which the underlying forward problem may be very unstable or ill-posed. Such PDEs, which include the Navier–Stokes equations of fluid dynamics, are characterized by a high sensitivity of solutions to perturbations of the initial data, a lack of rigorous global well-posedness results as well as possible non-convergence of numerical approximations. Under very mild and readily verifiable general hypotheses on the forward solution operator of such PDEs, we prove that the posterior measure expressing the solution of the Bayesian filtering problem is stable with respect to perturbations of the noisy measurements, and we provide quantitative estimates on the convergence of approximate Bayesian filtering distributions computed from numerical approximations. For the Navier–Stokes equations, our results imply uniform stability of the filtering problem even at arbitrarily small viscosity, when the underlying forward problem may become ill-posed, as well as the compactness of numerical approximants in a suitable metric on time-parametrized probability measures. 
    more » « less
  5. Abstract The replacement of a nonlinear parameter-to-observable mapping with a linear (affine) approximation is often carried out to reduce the computational costs associated with solving large-scale inverse problems governed by partial differential equations (PDEs). In the case of a linear parameter-to-observable mapping with normally distributed additive noise and a Gaussian prior measure on the parameters, the posterior is Gaussian. However, substituting an accurate model for a (possibly well justified) linear surrogate model can give misleading results if the induced model approximation error is not accounted for. To account for the errors, the Bayesian approximation error (BAE) approach can be utilised, in which the first and second order statistics of the errors are computed via sampling. The most common linear approximation is carried out via linear Taylor expansion, which requires the computation of (Fréchet) derivatives of the parameter-to-observable mapping with respect to the parameters of interest. In this paper, we prove that the (approximate) posterior measure obtained by replacing the nonlinear parameter-to-observable mapping with a linear approximation is in fact independent of the choice of the linear approximation when the BAE approach is employed. Thus, somewhat non-intuitively, employing the zero-model as the linear approximation gives the same approximate posterior as any other choice of linear approximations of the parameter-to-observable model. The independence of the linear approximation is demonstrated mathematically and illustrated with two numerical PDE-based problems: an inverse scattering type problem and an inverse conductivity type problem. 
    more » « less