skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diffusion Equation-Assisted Markov Chain Monte Carlo Methods for the Inverse Radiative Transfer Equation
Optical tomography is the process of reconstructing the optical properties of biological tissue using measurements of incoming and outgoing light intensity at the tissue boundary. Mathematically, light propagation is modeled by the radiative transfer equation (RTE), and optical tomography amounts to reconstructing the scattering coefficient in the RTE using the boundary measurements. In the strong scattering regime, the RTE is asymptotically equivalent to the diffusion equation (DE), and the inverse problem becomes reconstructing the diffusion coefficient using Dirichlet and Neumann data on the boundary. We study this problem in the Bayesian framework, meaning that we examine the posterior distribution of the scattering coefficient after the measurements have been taken. However, sampling from this distribution is computationally expensive, since to evaluate each Markov Chain Monte Carlo (MCMC) sample, one needs to run the RTE solvers multiple times. We therefore propose the DE-assisted two-level MCMC technique, in which bad samples are filtered out using DE solvers that are significantly cheaper than RTE solvers. This allows us to make sampling from the RTE posterior distribution computationally feasible.  more » « less
Award ID(s):
1750488 1740707
PAR ID:
10158022
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Entropy
Volume:
21
Issue:
3
ISSN:
1099-4300
Page Range / eLocation ID:
291
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For the inverse problem in physical models, one measures the solution and infers the model parameters using information from the collected data. Oftentimes, these data are inadequate and render the inverse problem ill-posed. We study the ill-posedness in the context of optical imaging, which is a medical imaging technique that uses light to probe (bio-)tissue structure. Depending on the intensity of the light, the forward problem can be described by different types of equations. High-energy light scatters very little, and one uses the radiative transfer equation (RTE) as the model; low-energy light scatters frequently, so the diffusion equation (DE) suffices to be a good approximation. A multiscale approximation links the hyperbolic-type RTE with the parabolic-type DE. The inverse problems for the two equations have a multiscale passage as well, so one expects that as the energy of the photons diminishes, the inverse problem changes from well- to ill-posed. We study this stability deterioration using the Bayesian inference. In particular, we use the Kullback–Leibler divergence between the prior distribution and the posterior distribution based on the RTE to prove that the information gain from the measurement vanishes as the energy of the photons decreases, so that the inverse problem is ill-posed in the diffusive regime. In the linearized setting, we also show that the mean square error of the posterior distribution increases as we approach the diffusive regime. 
    more » « less
  2. McCulloch, R. (Ed.)
    Varying coefficient models (VCMs) are widely used for estimating nonlinear regression functions for functional data. Their Bayesian variants using Gaussian process priors on the functional coefficients, however, have received limited attention in massive data applications, mainly due to the prohibitively slow posterior computations using Markov chain Monte Carlo (MCMC) algorithms. We address this problem using a divide-and-conquer Bayesian approach. We first create a large number of data subsamples with much smaller sizes. Then, we formulate the VCM as a linear mixed-effects model and develop a data augmentation algorithm for obtaining MCMC draws on all the subsets in parallel. Finally, we aggregate the MCMC-based estimates of subset posteriors into a single Aggregated Monte Carlo (AMC) posterior, which is used as a computationally efficient alternative to the true posterior distribution. Theoretically, we derive minimax optimal posterior convergence rates for the AMC posteriors of both the varying coefficients and the mean regression function. We provide quantification on the orders of subset sample sizes and the number of subsets. The empirical results show that the combination schemes that satisfy our theoretical assumptions, including the AMC posterior, have better estimation performance than their main competitors across diverse simulations and in a real data analysis. 
    more » « less
  3. Abstract We revisit the inverse source problem in a two dimensional absorbing and scattering medium and present a direct reconstruction method, which does not require iterative solvability of the forward problem, using measurements of the radiating flux at the boundary. The attenuation and scattering coefficients are known and the unknown source is isotropic. The approach is based on the Cauchy problem for a Beltrami-like equation for the sequence valued maps, and extends the original ideas of Bukhgeim from the non-scattering to the scattering media. We demonstrate the feasibility of the method in a numerical experiment in which the scattering is modeled by the two dimensional Henyey–Greenstein kernel with parameters meaningful in optical tomography. 
    more » « less
  4. Optical cloaking refers to making an object invisible by preventing the light scattering in some directions as it hits the object. There is interest in cloaking devices in radar and other applications. Developing a model to accurately capture cloaking comes with numerical challenges, however. We must determine how light propagates through a medium composed by multiple, thin layers of materials with different electromagnetic properties. In this paper we consider a multi-layered scalar transmission problem in 2D and use boundary integral equation methods to compute the field. The Kress product quadrature rule is used to approximate singular integrals evaluated on boundaries, the Boundary Regularized Integral Equation Formulation (BRIEF) method [1] with Periodic Trapezoid Rule (PTR) is employed to treat nearly singular ones (off boundaries) appearing in the representation formula. Numerical results illustrate the efficiency of this approach, which may be applied to N arbitrary smooth layers. 
    more » « less
  5. Abstract Numerical modeling of radiative transfer in nongray reacting media is a challenging problem in computational science and engineering. The choice of radiation models is important for accurate and efficient high-fidelity combustion simulations. Different applications usually involve different degrees of complexity, so there is yet no consensus in the community. In this paper, the performance of different radiative transfer equation (RTE) solvers and spectral models for a turbulent piloted methane/air jet flame are studied. The flame is scaled from the Sandia Flame D with a Reynolds number of 22,400. Three classes of RTE solvers, namely the discrete ordinates method, spherical harmonics method, and Monte Carlo method, are examined. The spectral models include the Planck-mean model, the full-spectrum k-distribution (FSK) method, and the line-by-line (LBL) calculation. The performances of different radiation models in terms of accuracy and computational cost are benchmarked. The results have shown that both RTE solvers and spectral models are critical in the prediction of radiative heat source terms for this jet flame. The trade-offs between the accuracy, the computational cost, and the implementation difficulty are discussed in detail. The results can be used as a reference for radiation model selection in combustor simulations. 
    more » « less