skip to main content

Title: Diffusion Equation-Assisted Markov Chain Monte Carlo Methods for the Inverse Radiative Transfer Equation
Optical tomography is the process of reconstructing the optical properties of biological tissue using measurements of incoming and outgoing light intensity at the tissue boundary. Mathematically, light propagation is modeled by the radiative transfer equation (RTE), and optical tomography amounts to reconstructing the scattering coefficient in the RTE using the boundary measurements. In the strong scattering regime, the RTE is asymptotically equivalent to the diffusion equation (DE), and the inverse problem becomes reconstructing the diffusion coefficient using Dirichlet and Neumann data on the boundary. We study this problem in the Bayesian framework, meaning that we examine the posterior distribution of the scattering coefficient after the measurements have been taken. However, sampling from this distribution is computationally expensive, since to evaluate each Markov Chain Monte Carlo (MCMC) sample, one needs to run the RTE solvers multiple times. We therefore propose the DE-assisted two-level MCMC technique, in which bad samples are filtered out using DE solvers that are significantly cheaper than RTE solvers. This allows us to make sampling from the RTE posterior distribution computationally feasible.
Authors:
;
Award ID(s):
1750488 1740707
Publication Date:
NSF-PAR ID:
10158022
Journal Name:
Entropy
Volume:
21
Issue:
3
Page Range or eLocation-ID:
291
ISSN:
1099-4300
Sponsoring Org:
National Science Foundation
More Like this
  1. For the inverse problem in physical models, one measures the solution and infers the model parameters using information from the collected data. Oftentimes, these data are inadequate and render the inverse problem ill-posed. We study the ill-posedness in the context of optical imaging, which is a medical imaging technique that uses light to probe (bio-)tissue structure. Depending on the intensity of the light, the forward problem can be described by different types of equations. High-energy light scatters very little, and one uses the radiative transfer equation (RTE) as the model; low-energy light scatters frequently, so the diffusion equation (DE) sufficesmore »to be a good approximation. A multiscale approximation links the hyperbolic-type RTE with the parabolic-type DE. The inverse problems for the two equations have a multiscale passage as well, so one expects that as the energy of the photons diminishes, the inverse problem changes from well- to ill-posed. We study this stability deterioration using the Bayesian inference. In particular, we use the Kullback–Leibler divergence between the prior distribution and the posterior distribution based on the RTE to prove that the information gain from the measurement vanishes as the energy of the photons decreases, so that the inverse problem is ill-posed in the diffusive regime. In the linearized setting, we also show that the mean square error of the posterior distribution increases as we approach the diffusive regime.« less
  2. Abstract

    We revisit the inverse source problem in a two dimensional absorbing and scattering medium and present a direct reconstruction method, which does not require iterative solvability of the forward problem, using measurements of the radiating flux at the boundary. The attenuation and scattering coefficients are known and the unknown source is isotropic. The approach is based on the Cauchy problem for a Beltrami-like equation for the sequence valued maps, and extends the original ideas of Bukhgeim from the non-scattering to the scattering media. We demonstrate the feasibility of the method in a numerical experiment in which the scattering ismore »modeled by the two dimensional Henyey–Greenstein kernel with parameters meaningful in optical tomography.

    « less
  3. McCulloch, R. (Ed.)
    Varying coefficient models (VCMs) are widely used for estimating nonlinear regression functions for functional data. Their Bayesian variants using Gaussian process priors on the functional coefficients, however, have received limited attention in massive data applications, mainly due to the prohibitively slow posterior computations using Markov chain Monte Carlo (MCMC) algorithms. We address this problem using a divide-and-conquer Bayesian approach. We first create a large number of data subsamples with much smaller sizes. Then, we formulate the VCM as a linear mixed-effects model and develop a data augmentation algorithm for obtaining MCMC draws on all the subsets in parallel. Finally, wemore »aggregate the MCMC-based estimates of subset posteriors into a single Aggregated Monte Carlo (AMC) posterior, which is used as a computationally efficient alternative to the true posterior distribution. Theoretically, we derive minimax optimal posterior convergence rates for the AMC posteriors of both the varying coefficients and the mean regression function. We provide quantification on the orders of subset sample sizes and the number of subsets. The empirical results show that the combination schemes that satisfy our theoretical assumptions, including the AMC posterior, have better estimation performance than their main competitors across diverse simulations and in a real data analysis.« less
  4. Abstract

    Optical coherence tomography (OCT) is an optical technique which allows for volumetric visualization of the internal structures of translucent materials. Additional information can be gained by measuring the rate of signal attenuation in depth. Techniques have been developed to estimate the rate of attenuation on a voxel by voxel basis. This depth resolved attenuation analysis gives insight into tissue structure and organization in a spatially resolved way. However, the presence of speckle in the OCT measurement causes the attenuation coefficient image to contain unrealistic fluctuations and makes the reliability of these images at the voxel level poor. While themore »distribution of speckle in OCT images has appeared in literature, the resulting voxelwise corruption of the attenuation analysis has not. In this work, the estimated depth resolved attenuation coefficient from OCT data with speckle is shown to be approximately exponentially distributed. After this, a prior distribution for the depth resolved attenuation coefficient is derived for a simple system using statistical mechanics. Finally, given a set of depth resolved estimates which were made from OCT data in the presence of speckle, a posterior probability distribution for the true voxelwise attenuation coefficient is derived and a Bayesian voxelwise estimator for the coefficient is given. These results are demonstrated in simulation and validated experimentally.

    « less
  5. Abstract The measurement of the optical transmission matrix (TM) of an opaque material is an advanced form of space-variant aberration correction. Beyond imaging, TM-based methods are emerging in a range of fields, including optical communications, micro-manipulation, and computing. In many cases, the TM is very sensitive to perturbations in the configuration of the scattering medium it represents. Therefore, applications often require an up-to-the-minute characterisation of the fragile TM, typically entailing hundreds to thousands of probe measurements. Here, we explore how these measurement requirements can be relaxed using the framework of compressive sensing, in which the incorporation of prior information enablesmore »accurate estimation from fewer measurements than the dimensionality of the TM we aim to reconstruct. Examples of such priors include knowledge of a memory effect linking the input and output fields, an approximate model of the optical system, or a recent but degraded TM measurement. We demonstrate this concept by reconstructing the full-size TM of a multimode fibre supporting 754 modes at compression ratios down to ∼5% with good fidelity. We show that in this case, imaging is still possible using TMs reconstructed at compression ratios down to ∼1% (eight probe measurements). This compressive TM sampling strategy is quite general and may be applied to a variety of other scattering samples, including diffusers, thin layers of tissue, fibre optics of any refractive profile, and reflections from opaque walls. These approaches offer a route towards the measurement of high-dimensional TMs either quickly or with access to limited numbers of measurements.« less