skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elevated nutrients and herbivory negatively affect Dictyota growth dynamics
Caribbean coral reefs are experiencing a shift to algal dominance at the expense of stony corals. Determining the factors leading to algal phase shifts is crucial for assuring the survival of Caribbean coral reefs. In this study, factors controlling the growth of the abundant brown macroalgae Dictyota spp. were investigated by varying herbivory pressure (caging) and nutrients (fertilizer addition) on coral reefs near St. Thomas (US Virgin Islands). Experiment 1 measured Dictyota heights and percent cover at 3 sites (11-20 m depth) and showed no growth response to nutrient addition and a weak negative response to herbivory. To confirm results of Experiment 1, a caging and nutrient manipulation (Experiment 2) was conducted at one site (14 m depth) using the dependent variable Dictyota biomass. A strong negative response of growth to nutrient addition was shown, presumably because of nutrient inhibition, and an equally negative response to herbivory (loss of ~50% biomass over 21 d). The inhibitory effect of fertilization on growth was confirmed in a third experiment that showed increasing biomass loss over 4 treatment levels of increasing fertilizer addition (0 [ambient], 5, 10, 20 g). Overall, Dictyota was not nutrient limited at any sites, and was weakly controlled by herbivore populations. Factors responsible for Dictyota abundance on Caribbean reefs may reflect decreased herbivory caused by overfishing and reductions in coral cover and do not appear to be affected by recent changes in nitrogen or phosphorus load. This study reinforces the need for conservation and management of herbivores in coral reef ecosystems, to mitigate the effects from anthropogenic stressors.  more » « less
Award ID(s):
1946412 1743802
PAR ID:
10327358
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
671
ISSN:
0171-8630
Page Range / eLocation ID:
81 to 95
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As coral reefs face accelerating threats at global scales, examining how different coral species respond to local disruption from top-down and bottom-up forces can inform management at local scales. This may provide additional time for reducing global stressors. We conducted a full factorial experiment examining the effects of corallivory, herbivory, and fertilizer addition on 2 corals:Acropora pulchraandPorites rus, the former of which is faster-growing but more susceptible to predation, disease, and heat-induced mortality. Fertilizer addition enhanced corallivory but did not affect net coral growth. Consumer exclusion enhanced the net growth ofA. pulchraby 18.1 times regardless of fertilizer treatment, while the net growth ofP. rusdid not differ among caging and fertilizer treatments.A. pulchrawas rarely overgrown by algae regardless of treatment, while herbivore exclusion and fertilizer enrichment produced opposing effects on overgrowth ofP. rus. In uncaged treatments, fertilizer enrichment led to greater herbivory but also 1.8 times greater algal overgrowth ofP. rusrelative to unfertilized treatments. However, in caged treatments, algal overgrowth ofP. ruswas 1.9 times higher in unfertilized versus fertilized treatments. Our results suggest that interactions between corallivory, herbivory, and fertilizer enrichment can have alternative effects on different coral species, with a hardier coral experiencing more negative impacts of fertilizer enrichment than a more sensitive coral, which was, in turn, more strongly suppressed by predation. Local stressors that disrupt top-down and bottom-up processes may increase the vulnerability of even the most robust corals, and it is these corals that have been predicted to become more common under future ocean scenarios. 
    more » « less
  2. Abstract Framework‐building corals create the three‐dimensional structure of coral reefs and are subject to predation from fishes, echinoderms, and gastropods. Anthropogenic stressors can magnify the effects of such top‐down pressure on foundation species. The gastropodCoralliophilaviolacea(Kiener, 1836) depletes coral energy reserves via predation, potentially increasing coral susceptibility to land‐based pollution (i.e., sediment accumulation and nutrient pollution). We hypothesized that sedimentation would worsen coral mortality, while nutrient enrichment would mitigate the harmful effects of sediment and predation on coral mortality by increasing the densities of algal symbionts. To test these hypotheses, we conducted in situ surveys of the fringing reefs in Mo'orea, French Polynesia to explore the relationships among massivePoritesspp. cover,C. violaceadensities, and sediment accumulation on coral colonies across low and high nutrient sites. We also conducted a factorial field experiment to test the interactions among these stressors on coral tissue mortality, symbiont densities, and chlorophyll. MassivePoritescolonies at higher nutrient sites hadC. violaceadensities 13 times higher than at low nutrient sites but there was no difference in the amount of live tissue on coral colonies with or without snails among these sites. In our experiment, there were interactions between predation and nutrients as well as nutrients and sediment that impacted coral mortality. Sedimentation and predation byC. violaceaincreased coral tissue mortality independently by ~20%. Nutrient enrichment reduced this effect in corals under sedimentation or predation pressure by lowering coral tissue mortality by 18% and increasing algal symbiont densities by ~28%. Our results indicate that sediment does not magnify top‐down pressure on this coral, and that moderate nutrient enrichment may interact with predation in complex, unexpected ways to alter the responses of corals to top‐down pressure. 
    more » « less
  3. Anthropogenic stressors like overfishing, land based runoff, and increasing temperatures cause the degradation of coral reefs, leading to the loss of corals and other calcifiers, increases in competitive fleshy algae, and increases in microbial pathogen abundance and hypoxia. To test the hypothesis that corals would be healthier by moving them off the benthos, a common garden experiment was conducted in which corals were translocated to midwater geodesic spheres (hereafter called Coral Reef Arks or Arks). Coral fragments translocated to the Arks survived significantly longer than equivalent coral fragments translocated to Control sites (i.e., benthos at the same depth). Over time, average living coral surface area and volume were higher on the Arks than the Control sites. The abundance and biomass of fish were also generally higher on the Arks compared to the Control sites, with more piscivorous fish on the Arks. The addition of Autonomous Reef Monitoring Structures (ARMS), which served as habitat for sessile and motile reef-associated organisms, also generally significantly increased fish associated with the Arks. Overall, the Arks increased translocated coral survivorship and growth, and exhibited knock-on effects such as higher fish abundance. 
    more » « less
  4. Over recent decades, many Caribbean reefs have transitioned to states where stony corals are no longer spatially dominant. The community dynamics culminating in this outcome are well known, but its functional implications remain incompletely understood. Here we used annual surveys from 1992 to 2019 to describe coral communities at 6 sites off St. John, US Virgin Islands, and explored how their ecological dynamics interact with their capacity to sustain estimated coral community calcification (G, kg CaCO 3 m -2 yr -1 ). These communities had low coral cover (≤4.4%), but they changed through small and incremental events that summed to a slight decline in coral cover and changes in species assemblages favoring biotic homogenization and weedy species. Estimated coral G remained low, between 0.3 and 1.3 kg CaCO 3 m -2 yr -1 (8.2-35.6 mmol CaCO 3 m -2 d -1 ), but it differed among sites and years. The dominant contributors to G were Siderastrea siderea (1 site), Porites astreoides (1 site), and Orbicella spp. (4 sites), but higher G only occurred where Orbicella spp. remained relatively common; G dramatically declined at 1 site when the abundance of this genus decreased. These results suggest that some coral-depleted reefs may maintain low G that could be sufficient to avoid transitions into net negative budget states, provided that biological and physical erosion and dissolution of CaCO 3 (not recorded here) are minimal. Further mortalities of the few coral species remaining on these reefs through disturbances like stony coral tissue loss disease would compromise this delicate production-erosion balance, and likely see transitions of such reefs into negative carbonate budget states. 
    more » « less
  5. Abstract Background Predation pressure and herbivory exert cascading effects on coral reef health and stability. However, the extent of these cascading effects can vary considerably across space and time. This variability is likely a result of the complex interactions between coral reefs’ biotic and abiotic dimensions. A major biological component that has been poorly integrated into the reefs' trophic studies is the microbial community, despite its role in coral death and bleaching susceptibility. Viruses that infect bacteria can control microbial densities and may positively affect coral health by controlling microbialization. We hypothesize that viral predation of bacteria has analogous effects to the top-down pressure of macroorganisms on the trophic structure and reef health. Results Here, we investigated the relationships between live coral cover and viruses, bacteria, benthic algae, fish biomass, and water chemistry in 110 reefs spanning inhabited and uninhabited islands and atolls across the Pacific Ocean. Statistical learning showed that the abundance of turf algae, viruses, and bacteria, in that order, were the variables best predicting the variance in coral cover. While fish biomass was not a strong predictor of coral cover, the relationship between fish and corals became apparent when analyzed in the context of viral predation: high coral cover (> 50%) occurred on reefs with a combination of high predator fish biomass (sum of sharks and piscivores > 200 g m −2 ) and high virus-to-bacteria ratios (> 10), an indicator of viral predation pressure. However, these relationships were non-linear, with reefs at the higher and lower ends of the coral cover continuum displaying a narrow combination of abiotic and biotic variables, while reefs at intermediate coral cover showed a wider range of parameter combinations. Conclusions The results presented here support the hypothesis that viral predation of bacteria is associated with high coral cover and, thus, coral health and stability. We propose that combined predation pressures from fishes and viruses control energy fluxes, inhibiting the detrimental accumulation of ecosystem energy in the microbial food web. 
    more » « less