skip to main content


This content will become publicly available on December 1, 2024

Title: Viral predation pressure on coral reefs
Abstract Background Predation pressure and herbivory exert cascading effects on coral reef health and stability. However, the extent of these cascading effects can vary considerably across space and time. This variability is likely a result of the complex interactions between coral reefs’ biotic and abiotic dimensions. A major biological component that has been poorly integrated into the reefs' trophic studies is the microbial community, despite its role in coral death and bleaching susceptibility. Viruses that infect bacteria can control microbial densities and may positively affect coral health by controlling microbialization. We hypothesize that viral predation of bacteria has analogous effects to the top-down pressure of macroorganisms on the trophic structure and reef health. Results Here, we investigated the relationships between live coral cover and viruses, bacteria, benthic algae, fish biomass, and water chemistry in 110 reefs spanning inhabited and uninhabited islands and atolls across the Pacific Ocean. Statistical learning showed that the abundance of turf algae, viruses, and bacteria, in that order, were the variables best predicting the variance in coral cover. While fish biomass was not a strong predictor of coral cover, the relationship between fish and corals became apparent when analyzed in the context of viral predation: high coral cover (> 50%) occurred on reefs with a combination of high predator fish biomass (sum of sharks and piscivores > 200 g m −2 ) and high virus-to-bacteria ratios (> 10), an indicator of viral predation pressure. However, these relationships were non-linear, with reefs at the higher and lower ends of the coral cover continuum displaying a narrow combination of abiotic and biotic variables, while reefs at intermediate coral cover showed a wider range of parameter combinations. Conclusions The results presented here support the hypothesis that viral predation of bacteria is associated with high coral cover and, thus, coral health and stability. We propose that combined predation pressures from fishes and viruses control energy fluxes, inhibiting the detrimental accumulation of ecosystem energy in the microbial food web.  more » « less
Award ID(s):
2118617 1951678
NSF-PAR ID:
10427601
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BMC Biology
Volume:
21
Issue:
1
ISSN:
1741-7007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tropical environments with unique abiotic and biotic factors—such as salt ponds, mangroves, and coral reefs—are often in close proximity. The heterogeneity of these environments is reflected in community shifts over short distances, resulting in high biodiversity. While phytoplankton assemblages physically associated with corals, particularly their symbionts, are well studied, less is known about phytoplankton diversity across tropical aquatic environments. We assess shifts in phytoplankton community composition along inshore to offshore gradients by sequencing and analyzing 16S rRNA gene amplicons using primers targeting the V1-V2 region that capture plastids from eukaryotic phytoplankton and cyanobacteria, as well as heterotrophic bacteria. Microbial alpha diversity computed from 16S V1-V2 amplicon sequence variant (ASV) data from 282 samples collected in and around Curaçao, in the Southern Caribbean Sea, varied more within the dynamic salt ponds, salterns, and mangroves, compared to the seemingly stable above-reef, off-reef, and open sea environments. Among eukaryotic phytoplankton, stramenopiles often exhibited the highest relative abundances in mangrove, above-reef, off-reef, and open sea environments, where cyanobacteria also showed high relative abundances. Within stramenopiles, diatom amplicons dominated in salt ponds and mangroves, while dictyochophytes and pelagophytes prevailed above reefs and offshore. Green algae and cryptophytes were also present, and the former exhibited transitions following the gradient from inland to offshore. Chlorophytes and prasinophyte Class IV dominated in salt ponds, while prasinophyte Class II, including Micromonas commoda and Ostreococcus Clade OII, had the highest relative abundances of green algae in mangroves, above-reef, off-reef, and the open sea. To improve Class II prasinophyte classification, we sequenced 18S rRNA gene amplicons from the V4 region in 41 samples which were used to interrelate plastid-based results with information on uncultured prasinophyte species from prior 18S rRNA gene-based studies. This highlighted the presence of newly described Ostreococcus bengalensis and two Micromonas candidate species. Network analyses identified co-occurrence patterns between individual phytoplankton groups, including cyanobacteria, and heterotrophic bacteria. Our study reveals multiple uncultured and novel lineages within green algae and dictyochophytes in tropical marine habitats. Collectively, the algal diversity patterns and potential co-occurrence relationships observed in connection to physicochemical and spatial influences help provide a baseline against which future change can be assessed. 
    more » « less
  2. Animal waste products are an important component of nutrient cycles and result in the trophic transmission of diverse microorganisms. There is growing recognition that the feces of consumers, such as predators, may impact resource species, their prey, via physical effects and/or microbial activity. We tested the effect of feces from distinct fish trophic groups on coral health and used heat-killed fecal controls to tease apart physical versus microbial effects of contact with fecal material. Fresh grazer/detritivore fish feces caused lesions more frequently on corals, and lesions were 4.2-fold larger than those from sterilized grazer/detritivore feces; in contrast, fresh corallivore feces did not cause more frequent or larger lesions than sterilized corallivore feces. Thus, microbial activity in grazer/detritivore feces, but not corallivore feces, was harmful to corals. Characterization of bacterial diversity in feces of 10 reef fish species, ranging from obligate corallivores to grazer/detritivores, indicated that our experimental findings may be broadly generalizable to consumer guild, since feces of some obligate corallivores contained ~2-fold higher relative abundances of coral mutualist bacteria ( e.g., Endozoicomonadaceae), and lower abundances of the coral pathogen, Vibrio coralliilyticus , than feces of some grazer/detritivores. These findings recontextualize the ecological roles of consumers on coral reefs: although grazer/detritivores support coral reef health in various ways ( e.g. , promoting coral settlement and herbivory through the removal of detritus and sediments from the algal matrix), they also disperse coral pathogens. Corallivore predation can wound corals, yet their feces contain potentially beneficial coral-associated bacteria, supporting the hypothesized role of consumers, and corallivores in particular, in coral symbiont dispersal. Such consumer-mediated microbial dispersal as demonstrated here has broad implications for environmental management. 
    more » « less
  3. Abstract

    As coral populations decline across the Caribbean, it is becoming increasingly important to understand the forces that inhibit coral survivorship and recovery. Predation by corallivores, such as the short coral snailCoralliophila abbreviata, are one such threat to coral health and recovery worldwide, but current understanding of the factors controlling corallivore populations, and therefore predation pressure on corals, remains limited. To examine the extent to which bottom-up forces (i.e., coral prey), top-down forces (i.e., predators), and marine protection relate toC. abbreviatadistributions, we surveyedC. abbreviataabundance, percent coral cover, and the abundance of potential snail predators across six protected and six unprotected reefs in the Florida Keys. We found thatC. abbreviataabundance was lower in protected areas where predator assemblages were also more diverse, and that across all sites snail abundance generally increased with coral cover.C. abbreviataabundance had strong, negative relationships with two gastropod predators—the Caribbean spiny lobster (Panulirus argus) and the grunt black margate (Anisotremus surinamensis), which may be exerting top-down pressure onC. abbreviatapopulations. Further, we found the size ofC. abbreviatawas also related to reef protection status, with largerC. abbreviataon average in protected areas, suggesting that gape-limited predators such asP. argusandA. surinamensismay alter size distributions by targeting small snails. Combined, these results provide preliminary evidence that marine protection in the Florida Keys may preserve critical trophic interactions that indirectly promote coral success via control of local populations of the common corallivorous snailC. abbreviata.

     
    more » « less
  4. null (Ed.)
    Abstract Background The microbiomes of foundation (habitat-forming) species such as corals and sponges underpin the biodiversity, productivity, and stability of ecosystems. Consumers shape communities of foundation species through trophic interactions, but the role of consumers in dispersing the microbiomes of such species is rarely examined. For example, stony corals rely on a nutritional symbiosis with single-celled endosymbiotic dinoflagellates (family Symbiodiniaceae) to construct reefs. Most corals acquire Symbiodiniaceae from the environment, but the processes that make Symbiodiniaceae available for uptake are not resolved. Here, we provide the first comprehensive, reef-scale demonstration that predation by diverse coral-eating (corallivorous) fish species promotes the dispersal of Symbiodiniaceae, based on symbiont cell densities and community compositions from the feces of four obligate corallivores, three facultative corallivores, two grazer/detritivores as well as samples of reef sediment and water. Results Obligate corallivore feces are environmental hotspots of Symbiodiniaceae cells: live symbiont cell concentrations in such feces are 5–7 orders of magnitude higher than sediment and water environmental reservoirs. Symbiodiniaceae community compositions in the feces of obligate corallivores are similar to those in two locally abundant coral genera ( Pocillopora and Porites ), but differ from Symbiodiniaceae communities in the feces of facultative corallivores and grazer/detritivores as well as sediment and water. Combining our data on live Symbiodiniaceae cell densities in feces with in situ observations of fish, we estimate that some obligate corallivorous fish species release over 100 million Symbiodiniaceae cells per 100 m 2 of reef per day. Released corallivore feces came in direct contact with coral colonies in the fore reef zone following 91% of observed egestion events, providing a potential mechanism for the transfer of live Symbiodiniaceae cells among coral colonies. Conclusions Taken together, our findings show that fish predation on corals may support the maintenance of coral cover on reefs in an unexpected way: through the dispersal of beneficial coral symbionts in corallivore feces. Few studies examine the processes that make symbionts available to foundation species, or how environmental reservoirs of such symbionts are replenished. This work sets the stage for parallel studies of consumer-mediated microbiome dispersal and assembly in other sessile, habitat-forming species. 
    more » « less
  5. null (Ed.)
    Dysbiosis of coral microbiomes results from various biotic and environmental stressors, including interactions with important reef fishes which may act as vectors of opportunistic microbes via deposition of fecal material. Additionally, elevated sea surface temperatures have direct effects on coral microbiomes by promoting growth and virulence of opportunists and putative pathogens, thereby altering host immunity and health. However, interactions between these biotic and abiotic factors have yet to be evaluated. Here, we used a factorial experiment to investigate the combined effects of fecal pellet deposition by the widely distributed surgeonfish Ctenochaetus striatus and elevated sea surface temperatures on microbiomes associated with the reef-building coral Porites lobata . Our results showed that regardless of temperature, exposure of P. lobata to C. striatus feces increased alpha diversity, dispersion, and lead to a shift in microbial community composition – all indicative of microbial dysbiosis. Although elevated temperature did not result in significant changes in alpha and beta diversity, we noted an increasing number of differentially abundant taxa in corals exposed to both feces and thermal stress within the first 48h of the experiment. These included opportunistic microbial lineages and taxa closely related to potential coral pathogens (i.e., Vibrio vulnificus , Photobacterium rosenbergii ). Some of these taxa were absent in controls but present in surgeonfish feces under both temperature regimes, suggesting mechanisms of microbial transmission and/or enrichment from fish feces to corals. Importantly, the impact to coral microbiomes by fish feces under higher temperatures appeared to inhibit wound healing in corals, as percentages of tissue recovery at the site of feces deposition were lower at 30°C compared to 26°C. Lower percentages of tissue recovery were associated with greater relative abundance of several bacterial lineages, with some of them found in surgeonfish feces (i.e., Rhodobacteraceae, Bdellovibrionaceae, Crocinitomicaceae). Our findings suggest that fish feces interact with elevated sea surface temperatures to favor microbial opportunism and enhance dysbiosis susceptibility in P. lobata . As the frequency and duration of thermal stress related events increase, the ability of coral microbiomes to recover from biotic stressors such as deposition of fish feces may be greatly affected, ultimately compromising coral health and resilience. 
    more » « less