skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mean flow and turbulence observations on reference and restored oyster reefs in Mosquito Lagoon - Florida from 2018-06-01 to 2018-11-15 (NCEI Accession 0225430)
Hydrodynamic experiments were conducted on reference and restored oyster reefs in Mosquito Lagoon, Florida (USA) between June and November 2018. Measurements were collected on intact, degraded, and restored (restoration age: 6month, 2years, 4years) oyster reefs (Crassostrea virginica) to investigate differences in flow and turbulence characteristics related to restoration age. The dataset presented herein includes hydrodynamic observations (timeseries) from experiments conducted on five different oyster reefs (Reference, R-2017, R-2016, R-2014, Degraded), with measurements that include: (1) forcing characteristics (wave heights, water depths, wind speeds, channel velocities), (2) reef characteristics (oyster densities, solid volume fractions), and (3) near-bed flow and turbulence observations (flow speeds, turbulent energy, turbulent kinetic energy dissipation, shear production) from within and above the oyster canopy on sample reefs. Data are presented as timeseries (column vectors) in nine .txt files, with one file for each experiment.  more » « less
Award ID(s):
1944880 1617374
PAR ID:
10327364
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
NOAA National Centers for Environmental Information
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The structural complexity of oyster reef canopy plays a major role in promoting biodiversity, balancing the sediment budget, and modulating hydrodynamics in estuarine systems. Although oyster canopy structure is both spatially and temporally heterogeneous, oyster canopies are generally characterized using simple first‐order quantities, like oyster density, which may lack the ability to sufficiently parameterize reef roughness. In this study, a novel laser‐scan approach was used to map the surface of intact reference and restored reefs (restoration age: 1–4 years) during low tide, when the oyster canopy was fully exposed. Measurements were used to estimate hydrodynamically relevant roughness characteristics over the entire reef surface (>140 m2; 0.50 m resolution), providing estimates of the canopy height (hc), standard deviation (), rugosity index (R), and fractal dimension (D). Average canopy heights ranged from 3.6 to 4.9 cm, with canopy height standard deviations between 1.4 and 2.0 cm. Mean rugosity indices and fractal dimensions were relatively low on the youngest (1 year) restored reef (R = 1.28;D = 2.67), with substantial increases observed for more mature reef canopies (4 years:R = 1.56;D = 2.71). Structural complexity was consistently greater on reef margins than in reef interiors. Increases in complexity were linked to restoration age, with older reefs exhibiting more complex oyster canopies. The highest fractal dimension was observed on the intact reference reef, highlighting the importance of sustained reef growth for maintaining higher‐order structural complexity. Results provide spatially explicit surface roughness characterizations for healthy, intertidal oyster reefs, with applications in both restoration science and natural and nature‐based feature design. 
    more » « less
  2. Abstract Restoration of foundation species promises to reverse environmental degradation and return lost ecosystem services, but a lack of standardized evaluation across projects limits understanding of recovery, especially in marine systems. Oyster reefs are restored to reverse massive global declines and reclaim valuable ecosystem services, but the success of these projects has not been systematically and comprehensively quantified. We synthesized data on ecosystem services associated with oyster restoration from 245 pairs of restored and degraded reefs and 136 pairs of restored and reference reefs across 3500 km of U.S. Gulf of Mexico and Atlantic coastlines. On average, restoration was associated with a 21‐fold increase in oyster production (mean log response ratio = 3.08 [95% confidence interval: 2.58–3.58]), 34–97% enhancement of habitat provisioning (mean community abundance = 0.51 [0.41–0.61], mean richness = 0.29 [0.19–0.39], and mean biomass = 0.69 [0.39–0.99]), 54% more nitrogen removal (mean = 0.43 [0.13–0.73]), and 89–95% greater sediment nutrients (mean = 0.67 [0.27–1.07]) and organic matter (mean = 0.64 [0.44–0.84]) relative to degraded habitats. Moreover, restored reefs matched reference reefs for these ecosystem services. Our results support the continued and expanded use of oyster restoration to enhance ecosystem services of degraded coastal systems and match many functions provided by reference reefs. 
    more » « less
  3. Restoration is increasingly implemented as a strategy to mitigate global declines in biogenic habitats, such as salt marshes and oyster reefs. Restoration efforts could be improved if we knew how site characteristics at landscape scales affect the ecological success of these foundation species. In this study, we determined how salt marsh shoreline geomorphologies (e.g. with variable hydrodynamic energy, fetch, erosion rates, and slopes) affect the success of restored intertidal oyster reefs, as well as how fauna utilize restored reefs and forage along marsh habitats. We constructed oyster reefs along three marsh shoreline geomorphologies in May 2012: 1) “creek” (small‐fetch, gradual‐sloped shoreline), “ramp” (large‐fetch, gradual‐sloped shoreline), and “scarp” (large‐fetch, steep‐sloped shoreline). Following recruitment, oyster spat density was greatest on ramp reefs; however, 2 years later, the highest adult oyster densities were found on creek reefs. Total nekton and blue crab catch rates in trawl nets were highest in the creek, while piscivore catch rates in gill nets were highest along the scarp shoreline. We found no difference in predation on snails in the salt marsh behind constructed reef and nonconstructed reference sites, but there were more snails consumed in the creek shoreline, which corresponded with the distribution of their major predator—blue crabs. We conclude that oyster reef construction was most successful for oysters in small‐fetch, gradual‐sloped, creek environments. However, nekton abundance did not always follow the same trends as oyster density, which could suggest constructed reefs may offer similar habitat‐related functions (prey availability and refuge) already present along existing salt marsh borders. 
    more » « less
  4. Fernández_Robledo, José A (Ed.)
    Turbulence and sound are important cues for oyster reef larval recruitment. Numerous studies have found a relationship between turbulence intensity and swimming behaviors of marine larvae, while others have documented the importance of sounds in enhancing larval recruitment to oyster reefs. However, the relationship between turbulence and the reef soundscape is not well understood. In this study we made side-by-side acoustic Doppler velocimeter turbulence measurements and hydrophone soundscape recordings over 2 intertidal oyster reefs (1 natural and 1 restored) and 1 adjacent bare mudflat as a reference. Sound pressure levels (SPL) were similar across all three sites, although SPL >  2000 Hz was highest at the restored reef, likely due to its larger area that contained a greater number of sound-producing organisms. Flow noise (FN), defined as the mean of pressure fluctuations recorded by the hydrophone atf<  100 Hz, was significantly related to mean flow speed, turbulent kinetic energy, and turbulence dissipation rate (ε), agreeing with theoretical calculations for turbulence. Our results also show a similar relationship between ε andFNto what has been previously reported for ε vs. downward larval swimming velocity (wb), with bothFNandwbdemonstrating rapid growth at ε >  0.1 cm2s−3. These results suggest that reef turbulence and sounds may attract oyster larvae in complementary and synergistic ways. 
    more » « less
  5. This dataset has been superceded by Lusk, B., R. Smith, and M.C.N. Castorani. 2024. Oyster fauna lengths, counts, and biomass from restored and reference reefs in Virginia coastal bays, 2005-2023 ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/d68de69f29cee5f737313a07f813f245 (Accessed 2024-02-22). which includes additional years and parameters. Oyster and associated reef fauna counts and lengths were sampled at 16 natural reference reefs and 61 restored shell plant reefs located at 18 sites in the Virginia Coast Reserve. Overfishing and disease decimated oyster reefs in the Virginia Coast Reserve in the 1900s. Reference reefs were defined as remnant reefs that naturally recovered in the early 2000s to develop the pronounced vertical structure and multiple oyster size classes that represent the desired endpoint of restoration efforts. Nearly every year since 2003, The Nature Conservancy and Virginia Marine Resource Commission have constructed oyster reefs in intertidal areas in the VCR. To construct the restored reefs, practitioners applied dredged, fossilized oyster shell to intertidal locations chosen for their bottom stability and accessibility (locations lacked oysters prior to construction). Whelk shell supplemented the oyster shell at 9 of the restored reefs. 
    more » « less