skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1617374

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Mean flow and turbulence measurements collected in a shallow Halodule wrightii shoal grass fringe highlighted significant heterogeneity in hydrodynamic effects over relatively small spatial scales. Experiments were conducted within the vegetation canopy (~4 cm above bottom) for relatively sparse (40% cover) and dense (70% cover) vegetation, with reference measurements collected near the bed above bare sediment. Significant benthic velocity shear was observed at all sample locations, with canopy shear layers that penetrated nearly to the bed at both vegetated sites. Turbulent shear production (P) was balanced by turbulent kinetic energy dissipation (ϵ) at all sample locations (P/ϵ≈1), suggesting that stem-generated turbulence played a minor role in the overall turbulence budget. While the more sparsely vegetated sample site was associated with enhanced channel-to-shore velocity attenuation (71.4 ± 1.0%) relative to flows above bare sediment (51.7 ± 2.2%), unexpectedly strong cross-shore currents were observed nearshore in the dense canopy (VNS), with magnitudes that were nearly twice as large as those measured in the main channel (VCH; VNS/VCH¯ = 1.81 ± 0.08). These results highlight the importance of flow steering and acceleration for within- and across-canopy transport, especially at the scale of individual vegetation patches, with important implications for nutrient and sediment fluxes. Importantly, this work represents one of the first hydrodynamic studies of shoal grass fringes in shallow coastal estuaries, as well as one of the only reports of turbulent mixing within H. wrightii canopies. 
    more » « less
  2. Hydrodynamic experiments were conducted on reference and restored oyster reefs in Mosquito Lagoon, Florida (USA) between June and November 2018. Measurements were collected on intact, degraded, and restored (restoration age: 6month, 2years, 4years) oyster reefs (Crassostrea virginica) to investigate differences in flow and turbulence characteristics related to restoration age. The dataset presented herein includes hydrodynamic observations (timeseries) from experiments conducted on five different oyster reefs (Reference, R-2017, R-2016, R-2014, Degraded), with measurements that include: (1) forcing characteristics (wave heights, water depths, wind speeds, channel velocities), (2) reef characteristics (oyster densities, solid volume fractions), and (3) near-bed flow and turbulence observations (flow speeds, turbulent energy, turbulent kinetic energy dissipation, shear production) from within and above the oyster canopy on sample reefs. Data are presented as timeseries (column vectors) in nine .txt files, with one file for each experiment. 
    more » « less