skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combustion instabilities of swirl combustors, with radial and axial air injection schemes; computational studies using LES and IDDES
Combustion instabilities of swirl combustion, with axial and radial air injection schemes, are subject of investigation in the present research. The computational studies are performed using the large-eddy simulation approach. The computational studies are performed for a Reynolds number 5.7x10^5 The analysis reveals that the radial air injection scheme enhance the turbulent mixing and thus, the efficiency of the combustion process. Thus, higher temperature values were observed for the case of radial air injection versus axial air injection scheme. The study also revealed that the radial air injection scheme reduces the CO2  more » « less
Award ID(s):
1950207
PAR ID:
10327369
Author(s) / Creator(s):
Editor(s):
AIAA Propulsion and Energy 2021
Date Published:
Journal Name:
IAA Propulsion and Energy 2021 Conference
Volume:
AIAA 2021-3571
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AIAA (Ed.)
    Swirl combustion is encountered in many engineering applications since it provides efficient fuel burning. Experimental studies of turbulent swirl combustion poses challenges due to unsteady nature of the combustion phenomenon. Therefore, computational approaches are a promising alternative for the numerical studies of supersonic combustion. The present studies concerns the computational studies of swirl combustion, particularly the effect of the injection scheme on the combustion efficiency and flame stability. Therefore, the effect of the air-fuel ratio on the combustion efficiency and flame stability is subject of investigation. The combustion efficiency is assessed based on the temperature developed inside the swirl combustor. The computations are carried out using the large-eddy simulation (LES) approach along with the flamelet combustion model. The analysis reveals the unsteady nature of the flame and thus, its departure from the core of the combustor. The analysis also reveals the presence of a region of high level of temperature, NO and2CO , inside the combustor. 
    more » « less
  2. AIAA (Ed.)
    Swirl combustion is one of the most efficient approach to efficient combustion processes and therefore, it has received great interest particularly from aerospace industry. Swirl combustion has been studied in the past both experimentally and computationally. However, in spite of the extended studies, the swirl combustion is still not well understood and therefore, further studies are required. One of the open questions in the swirl combustion is the effect of the swirl number on the combustion efficiency and instabilities. Over decades, extensive experimental and computational studies of swirl combustion have been performed. The experimental studies of swirl combustion are quite challenging due to the unsteady nature of the combustion process. To overcome these challenges, computational studies have been used in the study of turbulent combustion. The present study concerns the effect of the swirl number on the combustion efficiency and flame stability. The combustion efficiency is assessed based on the temperature developed inside the combustion chamber and NOx levels. The effect of air/fuel blowing ratio on the combustion efficiency and instability is also investigated in this research. The computations are carried out using the large-eddy simulation (LES) approach along with the flamelet combustion model. The analysis reveals the unsteady nature of the flame and thus, its departure from the core of the combustor. The analysis also reveals the presence of a region of high level of temperature, NO and2CO , inside the combustor 
    more » « less
  3. As fuel injection systems advance towards higher injection pressures and the combustor environment increases in both temperature and pressure in the pursuit of improved emissions and efficiency, advanced combustion strategies are required. Injecting fuel as a supercritical fluid has the potential to improve fuel/air mixing and eliminate steps in the spray vaporization process. Experiments are carried out on a heated fuel injector in an open-air test cell using Mie scattering, Schlieren imaging, and long-distance microscopy to investigate changes in spray characteristics with varying temperature and pressure. Spray angle, spray penetration length, and vapor-liquid ratio data are collected and evaluated. Near-nozzle imaging shows distinct changes in spray morphology during the initial microseconds of spray formation. Sprays injected under conditions further into the supercritical regime exhibit increased spray angle and vapor-to-liquid ratio. Spray penetration is found to decrease with increasing temperature. A jump in vapor-to-liquid ratio is observed in the vicinity of 568 K, indicating a transition in spray behaviour trending towards more rapid fuel/air mixing across the transcritical region. Changes in the micro-scale structure of the spray during the initial microseconds of spray formation exhibit this same narrow transition region. A significantly greater fraction of the spray plume is observed to be in a vapor or vapor-like state at a given time after injection initiation as the injection conditions are advanced into the supercritical state. These findings indicate that injection fuel as a supercritical fluid has the potential to improve the mixing of a fuel/air charge, and thus, improve combustion quality. 
    more » « less
  4. Summary Different methods of measuring cavitation resistance in fern petioles lead to variable results, particularly with respect to the P50metric. We hypothesised that the fern dictyostele structure affects air entry into the xylem, and therefore impacts the shape of the vulnerability curve.Our study examined this variation by comparing vulnerability curves constructed on petioles collected from evergreen and deciduous ferns in the field, with curves generated using the standard centrifuge, air‐injection and bench‐top dehydration methods. Additional experiments complemented the vulnerability curves to better understand how anatomy shapes estimates of cavitation resistance.Centrifugation and radial air injection generated acceptable vulnerability curves for the deciduous species, but overestimated drought resistance in the two evergreen ferns. In these hardy plants, axial air injection and bench‐top dehydration produced results that most closely aligned with observations in nature. Additional experiments revealed that the dictyostele anatomy impedes air entry into the xylem during spinning and radial air injection.Each method produced acceptable vulnerability curves, depending on the species being tested. Therefore, we stress the importance of validating the curves within situmeasures of water potential and, if possible, hydraulic data to generate realistic results with any of the methods currently available. 
    more » « less
  5. AIAA (Ed.)
    With a focus on improving mixing at extreme flow velocity conditions, this paper presents planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) studies on the flowfield of a high-speed, pulsed co-flow system integrated with a high-frequency actuator operating at 15 kHz. This active injection system delivers a supersonic pulsed actuation air jet at the inner core of the co-axial nozzle that provides large mean and fluctuating velocity profiles in the shear layers of a fluid stream injected surrounding the core through an annular nozzle. The instantaneous velocity, vorticity, and acetone concentration fields of the injector in three distinct modes of operation – pulsed actuation, steady actuation, and without actuation -are presented. The high-frequency streamwise vortices and shockwaves tailored to the mean flow significantly enhanced supersonic flow mixing between the fluids compared to the steady co-axial configuration operating at the same input pressure. The study analyzes the mixing and dynamic characteristics of this active co-axial injection system, which has the potential for supersonic mixing applications. 
    more » « less