skip to main content

Title: Homogeneous Catalytic Reduction of O 2 to H 2 O by a Terpyridine-Based FeN 3 O Complex
We report a new terpyridine-based FeN3O catalyst, Fe(tpytbupho)Cl2, which reduces O2 to H2O. Variable concentration and variable temperature spectrochemical studies with decamethylferrocene as a chemical reductant in acetonitrile solution enabled the elucidation of key reaction parameters for the catalytic reduction of O2 to H2O by Fe(tpytbupho)Cl2. These mechanistic studies suggest that a 2 + 2 mechanism is operative, where hydrogen peroxide is produced as a discrete intermediate, prior to further reduction to H2O. Consistent with this proposal, the spectrochemically measured first-order rate constant k (s−1) value for H2O2 reduction is larger than that for O2 reduction. Further, significant H2O2 production is observed under hydrodynamic conditions in rotating ring-disk electrode measurements, where the product can be swept away from the cathode surface before further reduction occurs.
Authors:
; ; ;
Award ID(s):
2102156 2018870
Publication Date:
NSF-PAR ID:
10327385
Journal Name:
Inorganic Chemistry
ISSN:
0020-1669
Sponsoring Org:
National Science Foundation
More Like this
  1. Nanocrystalline MnFe2O4 has shown promise as a catalyst for the oxygen reduction reaction (ORR) in alkaline solutions, but the material has been sparingly studied as highly ordered thin-film catalysts. To examine the role of surface termination and Mn and Fe site occupancy, epitaxial MnFe2O4 and Fe3O4 spinel oxide films were grown on (001)- and (111)-oriented Nb:SrTiO3 perovskite substrates using molecular beam epitaxy and studied as electrocatalysts for the oxygen reduction reaction (ORR). High-resolution X-ray diffraction (HRXRD) and X-ray photoelectron spectroscopy (XPS) show the synthesis of pure phase materials, while scanning transmission electron microscopy (STEM) and reflection high-energy electron diffraction (RHEED) analysis demonstrate island-like growth of (111) surface-terminated pyramids on both (001)- and (111)-oriented substrates, consistent with the literature and attributed to the lattice mismatch between the spinel films and the perovskite substrate. Cyclic voltammograms under a N2 atmosphere revealed distinct redox features for Mn and Fe surface termination based on comparison of MnFe2O4 and Fe3O4. Under an O2 atmosphere, electrocatalytic reduction of oxygen was observed at both Mn and Fe redox features; however, a diffusion-limited current was only achieved at potentials consistent with Fe reduction. This result contrasts with that of nanocrystalline MnFe2O4 reported in the literature where the diffusion-limitedmore »current is achieved with Mn-based catalysis. This difference is attributed to a low density of Mn surface termination, as determined by the integration of current from CVs collected under N2, in addition to low conductivity through the MnFe2O4 film due to the degree of inversion. Such low densities are attributed to the synthetic method and island-like growth pattern and highlight challenges in studying ORR catalysis with single-crystal spinel materials.« less
  2. Palladium(II)-catalyzed allylic acetoxylation has been the focus of extensive development and investigation. Methods that use molecular oxygen (O2) as the terminal oxidant typically benefit from the use of benzoquinone (BQ) and a transition-metal (TM) cocatalyst, such as Co(salophen), to support oxidation of Pd0 during catalytic turnover. We previously showed that Pd(OAc)2 and 4,5-diazafluoren-9-one (DAF) as an ancillary ligand catalyze allylic oxidation with O2 in the absence of cocatalysts. Herein, we show that BQ enhances DAF/Pd(OAc)2 catalytic activity, nearly matching the performance of reactions that include both BQ and Co(salophen). These observations are complemented by mechanistic studies of DAF/Pd(OAc)2 catalyst systems under three different oxidation conditions: (1) O2 alone, (2) O2 with cocatalytic BQ, and (3) O2 with cocatalytic BQ and Co(salophen). The beneficial effect of BQ in the absence of Co(salophen) is traced to the synergistic roles of O2 and BQ, both of which are capable of oxidizing Pd0 to PdII. The reaction of O2 generates H2O2 as a byproduct, which can oxidize hydroquinone to quinone in the presence of PdII. NMR spectroscopic studies, however, show that hydroquinone is the predominant redox state of the quinone cocatalyst in the absence of Co(salophen), while inclusion of Co(salophen) maintains oxidized quinone throughoutmore »the reaction, resulting in better reaction performance.« less
  3. Abstract

    Chemical looping air separation (CLAS) is a promising technology for oxygen generation with high efficiency. The key challenge for CLAS is to design robust oxygen sorbents with suitable redox properties and fast redox kinetics. In this work, perovskite-structured Sr1-xCaxFe1-yCoyO3oxygen sorbents were investigated and demonstrated for oxygen production with tunable redox properties, high redox rate, and excellent thermal/steam stability. Cobalt doping at B site was found to be highly effective, 33% improvement in oxygen productivity was observed at 500 °C. Moreover, it stabilizes the perovskite structure and prevents phase segregation under pressure swing conditions in the presence of steam. Scalable synthesis of Sr0.8Ca0.2Fe0.4Co0.6O3oxygen sorbents was carried out through solid state reaction, co-precipitation, and sol-gel methods. Both co-precipitation and sol-gel methods are capable of producing Sr0.8Ca0.2Fe0.4Co0.6O3sorbents with satisfactory phase purity, high oxygen capacity, and fast redox kinetics. Large scale evaluation of Sr0.8Ca0.2Fe0.4Co0.6O3, using an automated CLAS testbed with over 300 g sorbent loading, further demonstrated the effectiveness of the oxygen sorbent to produce 95% pure O2with a satisfactory productivity of 0.04 gO2gsorbent−1h−1at 600 °C.

  4. A general interest in harnessing the oxidizing power of dioxygen (O 2 ) continues to motivate research efforts on bioinspired and biomimetic complexes to better understand how metalloenzymes mediate these reactions. The ubiquity of Fe- and Cu-based enzymes attracts significant attention and has resulted in many noteworthy developments for abiotic systems interested in direct O 2 reduction and small molecule activation. However, despite the existence of Mn-based metalloenzymes with important O 2 -dependent activity, there has been comparatively less focus on the development of these analogues relative to Fe- and Cu-systems. In this Perspective , we summarize important contributions to the development of bioinspired mononuclear Mn complexes for O 2 activation and studies on their reactivity, emphasizing important design parameters in the primary and secondary coordination spheres and outlining mechanistic trends.
  5. All life on Earth is built of organic molecules, so the primordial sources of reduced carbon remain a major open question in studies of the origin of life. A variant of the alkaline-hydrothermal-vent theory for life’s emergence suggests that organics could have been produced by the reduction of CO 2 via H 2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog—and proposed evolutionary predecessor—of the Wood–Ljungdahl acetyl-CoA pathway of modern archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO 2 with H 2 to formate (HCOO – ), which has proven elusive in mild abiotic settings. Here we show the reduction of CO 2 with H 2 at room temperature under moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labeling with 13 C confirmed formate production. Separately, deuterium ( 2 H) labeling indicated that electron transfer to CO 2 does not occur via direct hydrogenation with H 2 but instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, removing H 2 , or eliminating the precipitate yieldedmore »no detectable product. Our work demonstrates the feasibility of spatially separated yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches.« less