In the absence of large-scale coherent structures, a widely used statistical theory of two-dimensional turbulence developed by Kraichnan, Leith, and Batchelor (KLB) predicts a power-law scaling for the energy,$$E(k)\propto k^\alpha$$with an integral exponent$$\alpha ={-3}$$, in the inertial range associated with the direct cascade. A power-law scaling is also observed in the presence of coherent structures, but the scaling exponent becomes fractal and often differs substantially from the value predicted by the KLB theory. Here we present a dynamical theory that sheds new light on the relationship between the spatial and temporal structure of the large-scale flow and the scaling of small-scale structures representing filamentary vorticity. Specifically, we find hyperbolic regions of the large-scale flow to play a key role in the flux of enstrophy between scales. Small-scale vorticity in these regions can be described by dynamically self-similar solutions of the Euler equation, which explains the power-law scaling. Furthermore, we find that correlations between different hyperbolic regions are responsible for the emergence of fractal scaling exponents.
more »
« less
Self-similar geometries within the inertial subrange of scales in boundary layer turbulence
The inertial subrange of turbulent scales is commonly reflected by a power law signature in ensemble statistics such as the energy spectrum and structure functions – both in theory and from observations. Despite promising findings on the topic of fractal geometries in turbulence, there is no accepted image for the physical flow features corresponding to this statistical signature in the inertial subrange. The present study uses boundary layer turbulence measurements to evaluate the self-similar geometric properties of velocity isosurfaces and investigate their influence on statistics for the velocity signal. The fractal dimension of streamwise velocity isosurfaces, indicating statistical self-similarity in the size of ‘wrinkles’ along each isosurface, is shown to be constant only within the inertial subrange of scales. For the transition between the inertial subrange and production range, it is inferred that the largest wrinkles become increasingly confined by the overall size of large-scale coherent velocity regions such as uniform momentum zones. The self-similarity of isosurfaces yields power-law trends in subsequent one-dimensional statistics. For instance, the theoretical 2/3 power-law exponent for the structure function can be recovered by considering the collective behaviour of numerous isosurface level sets. The results suggest that the physical presence of inertial subrange eddies is manifested in the self-similar wrinkles of isosurfaces.
more »
« less
- PAR ID:
- 10327423
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 942
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Dimensional analysis suggests that the dissipation length scale ( $$\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $$u_{\star }$$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the local integral scale, which is shown to be proportional to $$\ell _{{\it\epsilon}}$$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here $${\it\epsilon}$$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $$r/\ell _{{\it\epsilon}}$$ ), where $$r$$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $$r/\ell _{{\it\epsilon}}$$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $$\ell _{{\it\epsilon}}$$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $$\ell _{{\it\epsilon}}$$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales.more » « less
-
null (Ed.)The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider three snowfall events under vastly different levels of atmospheric turbulence. We characterize the size and morphology of the snow particles, and we simultaneously image their velocity, acceleration and relative concentration over vertical planes approximately $$30\ \textrm {m}^2$$ in area. We find that turbulence-driven settling enhancement explains otherwise contradictory trends between the particle size and velocity. The estimates of the Stokes number and the correlation between vertical velocity and local concentration are consistent with the view that the enhanced settling is rooted in the preferential sweeping mechanism. When the snow vertical velocity is large compared to the characteristic turbulence velocity, the crossing trajectories effect results in strong accelerations. When the conditions of preferential sweeping are met, the concentration field is highly non-uniform and clustering appears over a wide range of scales. These clusters, identified for the first time in a naturally occurring flow, display the signature features seen in canonical settings: power-law size distribution, fractal-like shape, vertical elongation and large fall speed that increases with the cluster size. These findings demonstrate that the fundamental phenomenology of particle-laden turbulence can be leveraged towards a better predictive understanding of snow precipitation and ground snow accumulation. They also demonstrate how environmental flows can be used to investigate dispersed multiphase flows at Reynolds numbers not accessible in laboratory experiments or numerical simulations.more » « less
-
A defining feature of three-dimensional hydrodynamic turbulence is that the rate of energy dissipation is bounded away from zero as viscosity is decreased (Reynolds number increased). This phenomenon—anomalous dissipation—is sometimes called the ‘zeroth law of turbulence’ as it underpins many celebrated theoretical predictions. Another robust feature observed in turbulence is that velocity structure functions S p ( ℓ ) := ⟨ | δ ℓ u | p ⟩ exhibit persistent power-law scaling in the inertial range, namely S p ( ℓ ) ∼ | ℓ | ζ p for exponents ζ p > 0 over an ever increasing (with Reynolds) range of scales. This behaviour indicates that the velocity field retains some fractional differentiability uniformly in the Reynolds number. The Kolmogorov 1941 theory of turbulence predicts that ζ p = p / 3 for all p and Onsager’s 1949 theory establishes the requirement that ζ p ≤ p / 3 for p ≥ 3 for consistency with the zeroth law. Empirically, ζ 2 ⪆ 2 / 3 and ζ 3 ⪅ 1 , suggesting that turbulent Navier–Stokes solutions approximate dissipative weak solutions of the Euler equations possessing (nearly) the minimal degree of singularity required to sustain anomalous dissipation. In this note, we adopt an experimentally supported hypothesis on the anti-alignment of velocity increments with their separation vectors and demonstrate that the inertial dissipation provides a regularization mechanism via the Kolmogorov 4/5-law. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.more » « less
-
Abstract In the atmospheric surface layer (ASL), a characteristic wavelength marking the limit between energy‐containing and inertial subrange scales can be defined from the vertical velocity spectrum. This wavelength is related to the integral length scale of turbulence, used in turbulence closure approaches for the ASL. The scaling laws describing the displacement of this wavelength with changes in atmospheric stability have eluded theoretical treatment and are considered here. Two derivations are proposed for mildly unstable to mildly stable ASL flows one that only makes use of normalizing constraints on the vertical velocity variance along with idealized spectral shapes featuring production to inertial subrange regimes, while another utilizes a co‐spectral budget with a return‐to‐isotropy closure. The expressions agree with field experiments and permit inference of the variations of the wavelength with atmospheric stability. This methodology offers a new perspective for numerical and theoretical modeling of ASL flows and for experimental design.more » « less
An official website of the United States government

