Combined Effect of Anti-SSEA4 and Anti-Globo H Antibodies on Breast Cancer Cells
- Award ID(s):
- 1954031
- Publication Date:
- NSF-PAR ID:
- 10327441
- Journal Name:
- ACS Chemical Biology
- Volume:
- 16
- Issue:
- 8
- Page Range or eLocation-ID:
- 1526 to 1537
- ISSN:
- 1554-8929
- Sponsoring Org:
- National Science Foundation
More Like this
-
Electrophilic fluorine-mediated dearomative spirocyclization has been developed to synthesize a range of fluoro-substituted spiro-isoxazoline ethers and lactones. The in vitro biological assays of synthesized compounds were probed for anti-viral activity against human cytomegalovirus (HCMV) and cytotoxicity against glioblastomas (GBM6) and triple negative breast cancer (MDA MB 231). Interestingly, compounds 4d and 4n showed significant activity against HCMV (IC 50 ∼ 10 μM), while 4l and 5f revealed the highest cytotoxicity with IC 50 = 36 to 80 μM. The synthetic efficacy and biological relevance offer an opportunity to further drug-discovery development of fluoro-spiro-isoxazolines as novel anti-viral and anti-cancer agents.
-
The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication. As PAD-mediated mechanisms in bovine immunology and physiology remain to be investigated, this study profiled deimination signatures in serum and serum-EVs in Bos taurus. Bos EVs were poly-dispersed in a 70–500 nm size range and showed differences in deiminated protein cargo, compared with whole sera. Key immune, metabolic and gene regulatory proteins were identified to be post-translationally deiminated with some overlapping hits in sera and EVs (e.g., immunoglobulins), while some were unique to either serum or serum-EVs (e.g., histones). Protein–protein interaction network analysis of deiminated proteins revealed KEGG pathways common for serum and serum-EVs, including complement and coagulation cascades, viral infection (enveloped viruses), viral myocarditis, bacterial and parasitic infections, autoimmune disease, immunodeficiency intestinal IgA production, B-cell receptor signalling, natural killer cell mediated cytotoxicity, platelet activation and hematopoiesis, alongside metabolic pathways including ferroptosis, vitamin digestion and absorption, cholesterol metabolism and mineral absorption. KEGG pathways specific to EVs related to HIF-1 signalling, oestrogenmore »