The convergence of edge computing and artificial intelligence requires that inference is performed on-device to provide rapid response with low latency and high accuracy without transferring large amounts of data to the cloud. However, power and size limitations make it challenging for electrical accelerators to support both inference and training for large neural network models. To this end, we propose Trident, a low-power photonic accelerator that combines the benefits of phase change material (PCM) and photonics to implement both inference and training in one unified architecture. Emerging silicon photonics has the potential to exploit the parallelism of neural network models, reduce power consumption and provide high bandwidth density via wavelength division multiplexing, making photonics an ideal candidate for on-device training and inference. As PCM is reconfigurable and non-volatile, we utilize it for two distinct purposes: (i) to maintain resonant wavelength without expensive electrical or thermal heaters, and (ii) to implement non-linear activation function, which eliminates the need to move data between memory and compute units. This multi-purpose use of PCM is shown to lead to significant reduction in energy consumption and execution time. Compared to photonic accelerators DEAP-CNN, CrossLight, and PIXEL, Trident improves energy efficiency by up to 43% and latency by up to 150% on average. Compared to electronic edge AI accelerators Google Coral which utilizes the Google Edge TPU and Bearkey TB96-AI, Trident improves energy efficiency by 11% and 93% respectively. While NVIDIA AGX Xavier is more energy efficient, the reduced data movement and GST activation of Trident reduce latency by 107% on average compared to the NVIDIA accelerator. When compared to the Google Coral and the Bearkey TB96-AI, Trident reduces latency by 1413% and 595% on average.
more »
« less
ROBIN: A Robust Optical Binary Neural Network Accelerator
Domain specific neural network accelerators have garnered attention because of their improved energy efficiency and inference performance compared to CPUs and GPUs. Such accelerators are thus well suited for resource-constrained embedded systems. However, mapping sophisticated neural network models on these accelerators still entails significant energy and memory consumption, along with high inference time overhead. Binarized neural networks (BNNs), which utilize single-bit weights, represent an efficient way to implement and deploy neural network models on accelerators. In this paper, we present a novel optical-domain BNN accelerator, named ROBIN , which intelligently integrates heterogeneous microring resonator optical devices with complementary capabilities to efficiently implement the key functionalities in BNNs. We perform detailed fabrication-process variation analyses at the optical device level, explore efficient corrective tuning for these devices, and integrate circuit-level optimization to counter thermal variations. As a result, our proposed ROBIN architecture possesses the desirable traits of being robust, energy-efficient, low latency, and high throughput, when executing BNN models. Our analysis shows that ROBIN can outperform the best-known optical BNN accelerators and many electronic accelerators. Specifically, our energy-efficient ROBIN design exhibits energy-per-bit values that are ∼4 × lower than electronic BNN accelerators and ∼933 × lower than a recently proposed photonic BNN accelerator, while a performance-efficient ROBIN design shows ∼3 × and ∼25 × better performance than electronic and photonic BNN accelerators, respectively.
more »
« less
- PAR ID:
- 10327444
- Date Published:
- Journal Name:
- ACM Transactions on Embedded Computing Systems
- Volume:
- 20
- Issue:
- 5s
- ISSN:
- 1539-9087
- Page Range / eLocation ID:
- 1 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Binary neural networks (BNNs) substitute complex arithmetic operations with simple bit-wise operations. The binarized weights and activations in BNNs can drastically reduce memory requirement and energy consumption, making it attractive for edge ML applications with limited resources. However, the severe memory capacity and energy constraints of low-power edge devices call for further reduction of BNN models beyond binarization. Weight pruning is a proven solution for reducing the size of many neural network (NN) models, but the binary nature of BNN weights make it difficult to identify insignificant weights to remove. In this paper, we present a pruning method based on latent weight with layer-level pruning sensitivity analysis which reduces the over-parameterization of BNNs, allowing for accuracy gains while drastically reducing the model size. Our method advocates for a heuristics that distinguishes weights by their latent weights, a real-valued vector used to compute the pseudogradient during backpropagation. It is tested using three different convolutional NNs on the MNIST, CIFAR-10, and Imagenette datasets with results indicating a 33%--46% reduction in operation count, with no accuracy loss, improving upon previous works in accuracy, model size, and total operation count.more » « less
-
Due to the high computational complexity and memory storage requirement, it is hard to directly deploy a full-precision Convolutional neural network (CNN) on embedded devices. The hardware-friendly designs are needed for resource-limited and energy-constrained embedded devices. Emerging solutions are adopted for the neural network compression, e.g., binary/ternary weight network, pruned network and quantized network. Among them, binary neural network (BNN) is believed to be the most hardware-friendly framework due to its small network size and low computational complexity. No existing work has further shrunk the size of BNN. In this work, we explore the redundancy in BNN and build a compact BNN (CBNN) based on the bit-level sensitivity analysis and bit-level data pruning. The input data is converted to a high dimensional bit-sliced format. In the post-training stage, we analyze the impact of different bit slices to the accuracy. By pruning the redundant input bit slices and shrinking the network size, we are able to build a more compact BNN. Our result shows that we can further scale down the network size of the BNN up to 3.9x with no more than a 1% accuracy drop. The actual runtime can be reduced up to 2x and 9.9x compared with the baseline BNN and its full-precision counterpart, respectively.more » « less
-
In pursuit of higher inference accuracy, deep neural network (DNN) models have significantly increased in complexity and size. To overcome the consequent computational challenges, scalable chiplet-based accelerators have been proposed. However, data communication using metallic-based interconnects in these chiplet-based DNN accelerators is becoming a primary obstacle to performance, energy efficiency, and scalability. The photonic interconnects can provide adequate data communication support due to some superior properties like low latency, high bandwidth and energy efficiency, and ease of broadcast communication. In this paper, we propose SPACX: a Silicon Photonics-based Chiplet ACcelerator for DNN inference applications. Specifically, SPACX includes a photonic network design that enables seamless single-chiplet and cross-chiplet broadcast communications, and a tailored dataflow that promotes data broadcast and maximizes parallelism. Furthermore, we explore the broadcast granularities of the photonic network and implications on system performance and energy efficiency. A flexible bandwidth allocation scheme is also proposed to dynamically adjust communication bandwidths for different types of data. Simulation results using several DNN models show that SPACX can achieve 78% and 75% reduction in execution time and energy, respectively, as compared to other state-of-the-art chiplet-based DNN accelerators.more » « less
-
Capmany, José (Ed.)This paper adopts advanced monolithic silicon-photonics integrated-circuits manufacturing capabilities to realize system-on-chip photonic-electronic linear-algebra accelerators for self-attention computation in various applications of deep-learning neural networks and Large Language Models. With the features of holistic co-design approaches, optical comb-based broadband modulations, and consecutive matrix-multiplication architecture, the system/circuit/device-level simulations of the proposed accelerator can achieve 2.14-TMAC/s/mm2 computation density and 27.9-fJ/MAC energy efficiency with practical considerations of power/area overhead due to photonic-electronic on-chip conversions, integrations, and calibrations.more » « less
An official website of the United States government

