Abstract In the southern Great Lakes Region, North America, between 19,000 and 8,000 years ago, temperatures rose by 2.5–6.5°C and sprucePiceaforests/woodlands were replaced by mixed‐deciduous or pinePinusforests. The demise ofPiceaforests/woodlands during the last deglaciation offers a model system for studying how changing climate and disturbance regimes interact to trigger declines of dominant species and vegetation‐type conversions.The role of rising temperatures in driving the regional demise ofPiceaforests/woodlands is widely accepted, but the role of fire is poorly understood. We studied the effect of changing fire activity onPiceadeclines and rates of vegetation composition change using fossil pollen and macroscopic charcoal from five high‐resolution lake sediment records.The decline ofPiceaforests/woodlands followed two distinct patterns. At two sites (Stotzel‐Leis and Silver Lake), fire activity reached maximum levels during the declines and both charcoal accumulation rates and fire frequency were significantly and positively associated with vegetation composition change rates. At these sites,Piceadeclined to low levels by 14 kyr BP and was largely replaced by deciduous hardwood taxa like ashFraxinus, hop‐hornbeam/hornbeamOstrya/Carpinusand elmUlmus. However, this ecosystem transition was reversible, asPiceare‐established at lower abundances during the Younger Dryas.At the other three sites, there was no statistical relationship between charcoal accumulation and vegetation composition change rates, though fire frequency was a significant predictor of rates of vegetation change at Appleman Lake and Triangle Lake Bog. At these sites,Piceadeclined gradually over several thousand years, was replaced by deciduous hardwoods and high levels ofPinusand did not re‐establish during the Younger Dryas.Synthesis. Fire does not appear to have been necessary for the climate‐driven loss ofPiceawoodlands during the last deglaciation, but increased fire frequency accelerated the decline ofPiceain some areas by clearing the way for thermophilous deciduous hardwood taxa. Hence, warming and intensified fire regimes likely interacted in the past to cause abrupt losses of coniferous forests and could again in the coming decades.
more »
« less
Differences in forest composition following two periods of settlement by pre-Columbian Native Americans
Temperate broadleaf forests in eastern North America are diverse ecosystems whose vegetation composition has shifted over the last several millennia in response to climatic and human drivers. Yet, detailed records of long-term changes in vegetation composition and diversity in response to known periods of human activity, particularly multiple distinct periods of human activity at the same site, are still relatively sparse. In this study, we examine a sediment record from Avery Lake, Illinois, USA, using multiple metrics derived from pollen data to infer vegetation composition and diversity over the last 3,000 years. This 3,000-year history encompasses the Baumer (300 BCE–300 CE) and Mississippian settlements (1150–1450 CE) at Kincaid Mounds (adjacent to Avery Lake), and captures differences in the impact that these groups had on vegetation composition. Both groups actively cleared the local landscape for settlement and horticultural/agricultural purposes. Given the persistence of fire-tolerant Quercus in conjunction with declines in other tree taxa, this clearing likely occurred through the use of fire. We also apply a self-organized mapping technique to the multivariate pollen assemblages to identify similarities and differences in vegetation composition across time. Those results suggest that the vegetation surrounding Avery Lake was compositionally similar before and after the Baumer settlement, but compositionally different after the Mississippian settlement. The end of the Mississippian settlement occurred simultaneously with a regional shift in moisture characterized by drier summers and wetter winters associated with the Little Ice Age (1250–1850 CE), which likely prevented this ecosystem from returning to its pre-Mississippian composition.
more »
« less
- Award ID(s):
- 1903628
- PAR ID:
- 10327538
- Date Published:
- Journal Name:
- Vegetation History and Archaeobotany
- ISSN:
- 0939-6314
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wildfire is a ubiquitous disturbance agent in subalpine forests in western North America. Lodgepole pine ( Pinus contorta var. latifolia), a dominant tree species in these forests, is largely resilient to high-severity fires, but this resilience may be compromised under future scenarios of altered climate and fire activity. We investigated fire occurrence and post-fire vegetation change in a lodgepole pine forest over the past 2500 years to understand ecosystem responses to variability in wildfire and climate. We reconstructed vegetation composition from pollen preserved in a sediment core from Chickaree Lake, Colorado, USA (1.5-ha lake), in Rocky Mountain National Park, and compared vegetation change to an existing fire history record. Pollen samples ( n = 52) were analyzed to characterize millennial-scale and short-term (decadal-scale) changes in vegetation associated with multiple high-severity fire events. Pollen assemblages were dominated by Pinus throughout the record, reflecting the persistence of lodgepole pine. Wildfires resulted in significant declines in Pinus pollen percentages, but pollen assemblages returned to pre-fire conditions after 18 fire events, within c.75 years. The primary broad-scale change was an increase in Picea, Artemisia, Rosaceae, and Arceuthobium pollen types, around 1155 calibrated years before present. The timing of this change is coincident with changes in regional pollen records, and a shift toward wetter winter conditions identified from regional paleoclimate records. Our results indicate the overall stability of vegetation in Rocky Mountain lodgepole pine forests during climate changes and repeated high-severity fires. Contemporary deviations from this pattern of resilience could indicate future recovery challenges in these ecosystems.more » « less
-
Abstract Wildfires strongly influence forest ecosystem processes, including carbon and nutrient cycling, and vegetation dynamics. As fire activity increases under changing climate conditions, the ecological and biogeochemical resilience of many forest ecosystems remains unknown.To investigate the resilience of forest ecosystems to changing climate and wildfire activity over decades to millennia, we developed a 4800‐year high‐resolution lake‐sediment record from Silver Lake, Montana, USA (47.360° N, 115.566° W). Charcoal particles, pollen grains, element concentrations and stable isotopes of C and N serve as proxies of past changes in fire, vegetation and ecosystem processes such as nitrogen cycling and soil erosion, within a small subalpine forest watershed. A published lake‐level history from Silver Lake provides a local record of palaeohydrology.A trend towards increased effective moisture over the late Holocene coincided with a distinct shift in the pollen assemblage c. 1900 yr BP, resulting from increased subalpine conifer abundance. Fire activity, inferred from peaks in macroscopic charcoal, decreased significantly after 1900 yr BP, from one fire event every 126 yr (83–184 yr, 95% CI) from 4800 to 1900 yr BP, to one event every 223 yr (175–280 yr) from 1900 yr BP to present.Across the record, individual fire events were followed by two distinct decadal‐scale biogeochemical responses, reflecting differences in ecosystem impacts of fires on watershed processes. These distinct biogeochemical responses were interpreted as reflecting fire severity, highlighting (i) erosion, likely from large or high‐severity fires, and (ii) nutrient transfers and enhanced within‐lake productivity, likely from lower severity or patchier fires. Biogeochemical and vegetation proxies returned to pre‐fire values within decades regardless of the nature of fire effects.Synthesis. Palaeorecords of fire and ecosystem responses provide a novel view revealing past variability in fire effects, analogous to spatial variability in fire severity observed within contemporary wildfires. Overall, the palaeorecord highlights ecosystem resilience to fire across long‐term variability in climate and fire activity. Higher fire frequencies in past millennia relative to the 20th and 21st century suggest that northern Rocky Mountain subalpine ecosystems could remain resilient to future increases in fire activity, provided continued ecosystem recovery within decades.more » « less
-
We present oxygen isotope and charcoal accumulation records from two lakes in eastern Washington that have sufficient temporal resolution to quantitatively compare with tree‐ring records and meteorological data. Hydroclimate reconstructions from tree‐rings and lake sediments show close correspondence after accounting for seasonal‐ to centennial‐ scale temporal sensitivities. Carbonate δ18O measurements from Castor and Round lakes reveal that the Medieval Climate Anomaly (MCA) experienced wetter November‐March conditions than the Little Ice Age (LIA). Charcoal records from Castor, Round, and nearby lakes show elevated fire activity during the LIA compared to the MCA. Increased multidecadal hydroclimate variability after 1250 CE is evident in proxy records throughout western North America. In the Upper Columbia River Basin, multidecadal wet periods during the LIA may have enhanced fuel loads that burned in subsequent dry periods. A notable decline in biomass burning occurred with Euro‐American settlement in the late nineteenth century.more » « less
-
A Holocene history of climate, fire, landscape evolution, and human activity in northeastern IcelandAbstract. Paleoclimate reconstructions across Iceland provide a template for past changes in climate across the northern North Atlantic, a crucial region due to its position relative to the global northward heat transport system and its vulnerability to climate change. The roles of orbitally driven summer cooling, volcanism, and human impact as triggers of local environmental changes in the Holocene of Iceland remain debated. While there are indications that human impact may have reduced environmental resilience during late Holocene summer cooling, it is still difficult to resolve to what extent human and natural factors affected Iceland's late Holocene landscape instability. Here, we present a continuous Holocene fire record of northeastern Iceland from proxies archived in Stóra Viðarvatn sediment. We use pyrogenic polycyclic aromatic hydrocarbons (pyroPAHs) to trace shifts in fire regimes, paired with continuous biomarker and bulk geochemical records of soil erosion, lake productivity, and human presence. The molecular composition of pyroPAHs and a wind pattern reconstruction indicate a naturally driven fire signal that is mostly regional. Generally low fire frequency during most of the Holocene significantly increased at 3 ka and again after 1.5 ka BP before known human settlement in Iceland. We propose that shifts in vegetation type caused by cooling summers over the past 3 kyr, in addition to changes in atmospheric circulation, such as shifts in North Atlantic Oscillation (NAO) regime, led to increased aridity and biomass flammability. Our results show no evidence of faecal biomarkers associated with human activity during or after human colonisation in the 9th century CE. Instead, faecal biomarkers follow the pattern described by erosional proxies, pointing toward a negligible human presence and/or a diluted signal in the lake's catchment. However, low post-colonisation levels of pyroPAHs, in contrast to an increasing flux of erosional bulk proxies, suggest that farming and animal husbandry may have suppressed fire frequency by reducing the spread and flammability of fire-prone vegetation (e.g. heathlands). Overall, our results describe a fire frequency heavily influenced by long-term changes in climate through the Holocene. They also suggest that human colonisation had contrasting effects on the local environment by lowering its resilience to soil erosion while increasing its resilience to fire.more » « less
An official website of the United States government

