Meta reinforcement learning (Meta-RL) is an approach wherein the experience gained from solving a variety of tasks is distilled into a meta-policy. The metapolicy, when adapted over only a small (or just a single) number of steps, is able to perform near-optimally on a new, related task. However, a major challenge to adopting this approach to solve real-world problems is that they are often associated with sparse reward functions that only indicate whether a task is completed partially or fully. We consider the situation where some data, possibly generated by a suboptimal agent, is available for each task. We then develop a class of algorithms entitled Enhanced Meta-RL using Demonstrations (EMRLD) that exploit this information—even if sub-optimal—to obtain guidance during training. We show how EMRLD jointly utilizes RL and supervised learning over the offline data to generate a meta-policy that demonstrates monotone performance improvements. We also develop a warm started variant called EMRLD-WS that is particularly efficient for sub-optimal demonstration data. Finally, we show that our EMRLD algorithms significantly outperform existing approaches in a variety of sparse reward environments, including that of a mobile robot.
more »
« less
Reinforcement Learning with Sparse Rewards using Guidance from Offline Demonstration
A major challenge in real-world reinforcement learning (RL) is the sparsity of reward feedback. Often, what is available is an intuitive but sparse reward function that only indicates whether the task is completed partially or fully. However, the lack of carefully designed, fine grain feedback implies that most existing RL algorithms fail to learn an acceptable policy in a reasonable time frame. This is because of the large number of exploration actions that the policy has to perform before it gets any useful feedback that it can learn from. In this work, we address this challenging problem by developing an algorithm that exploits the offline demonstration data generated by a sub-optimal behavior policy for faster and efficient online RL in such sparse reward settings. The proposed algorithm, which we call the Learning Online with Guidance Offline (LOGO) algorithm, merges a policy improvement step with an additional policy guidance step by using the offline demonstration data. The key idea is that by obtaining guidance from - not imitating - the offline data, LOGO orients its policy in the manner of the sub-optimal policy, while yet being able to learn beyond and approach optimality. We provide a theoretical analysis of our algorithm, and provide a lower bound on the performance improvement in each learning episode. We also extend our algorithm to the even more challenging incomplete observation setting, where the demonstration data contains only a censored version of the true state observation. We demonstrate the superior performance of our algorithm over state-of-the-art approaches on a number of benchmark environments with sparse rewards and censored state. Further, we demonstrate the value of our approach via implementing LOGO on a mobile robot for trajectory tracking and obstacle avoidance, where it shows excellent performance.
more »
« less
- Award ID(s):
- 2045783
- PAR ID:
- 10327543
- Date Published:
- Journal Name:
- International Conference on Learning Representations (ICLR)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reinforcement learning (RL) is mechanized to learn from experience. It solves the problem in sequential decisions by optimizing reward-punishment through experimentation of the distinct actions in an environment. Unlike supervised learning models, RL lacks static input-output mappings and the objective of minimization of a vector error. However, to find out an optimal strategy, it is crucial to learn both continuous feedback from training data and the offline rules of the experiences with no explicit dependence on online samples. In this paper, we present a study of a multi-agent RL framework which involves a Critic in semi-offline mode criticizing over an online Actor-Critic network, namely, Critic-over-Actor-Critic (CoAC) model, in finding optimal treatment plan of ICU patients as well as optimal strategy in a combative battle game. For further validation, we also examine the model in the adversarial assignment.more » « less
-
Existing offline reinforcement learning (RL) methods face a few major challenges, particularly the distributional shift between the learned policy and the behavior policy. Offline Meta-RL is emerging as a promising approach to address these challenges, aiming to learn an informative meta-policy from a collection of tasks. Nevertheless, as shown in our empirical studies, offline Meta-RL could be outperformed by offline single-task RL methods on tasks with good quality of datasets, indicating that a right balance has to be delicately calibrated between "exploring" the out-of-distribution state-actions by following the meta-policy and "exploiting" the offline dataset by staying close to the behavior policy. Motivated by such empirical analysis, we propose model-based offline ta-RL with regularized policy optimization (MerPO), which learns a meta-model for efficient task structure inference and an informative meta-policy for safe exploration of out-of-distribution state-actions. In particular, we devise a new meta-Regularized model-based Actor-Critic (RAC) method for within-task policy optimization, as a key building block of MerPO, using both conservative policy evaluation and regularized policy improvement; and the intrinsic tradeoff therein is achieved via striking the right balance between two regularizers, one based on the behavior policy and the other on the meta-policy. We theoretically show that the learnt policy offers guaranteed improvement over both the behavior policy and the meta-policy, thus ensuring the performance improvement on new tasks via offline Meta-RL. Our experiments corroborate the superior performance of MerPO over existing offline Meta-RL methods.more » « less
-
In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based solely on a dataset of historical interactions with the environment. This serves as an extreme test for an agent's ability to effectively use historical data which is known to be critical for efficient RL. Prior work in offline RL has been confined almost exclusively to model-free RL approaches. In this work, we present MOReL, an algorithmic framework for model-based offline RL. This framework consists of two steps: (a) learning a pessimistic MDP using the offline dataset; (b) learning a near-optimal policy in this pessimistic MDP. The design of the pessimistic MDP is such that for any policy, the performance in the real environment is approximately lower-bounded by the performance in the pessimistic MDP. This enables the pessimistic MDP to serve as a good surrogate for purposes of policy evaluation and learning. Theoretically, we show that MOReL is minimax optimal (up to log factors) for offline RL. Empirically, MOReL matches or exceeds state-of-the-art results on widely used offline RL benchmarks. Overall, the modular design of MOReL enables translating advances in its components (for e.g., in model learning, planning etc.) to improvements in offline RL.more » « less
-
In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based solely on a dataset of historical interactions with the environment. The ability to train RL policies offline would greatly expand where RL can be applied, its data efficiency, and its experimental velocity. Prior work in offline RL has been confined almost exclusively to model-free RL approaches. In this work, we present MOReL, an algorithmic framework for model-based offline RL. This framework consists of two steps: (a) learning a pessimistic MDP (P-MDP) using the offline dataset; (b) learning a near-optimal policy in this P-MDP. The learned P-MDP has the property that for any policy, the performance in the real environment is approximately lower-bounded by the performance in the P-MDP. This enables it to serve as a good surrogate for purposes of policy evaluation and learning, and overcome common pitfalls of model-based RL like model exploitation. Theoretically, we show that MOReL is minimax optimal (up to log factors) for offline RL. Through experiments, we show that MOReL matches or exceeds state-of-the-art results in widely studied offline RL benchmarks. Moreover, the modular design of MOReL enables future advances in its components (e.g., in model learning, planning etc.) to directly translate into improvements for offline RL.more » « less