skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Critic-over-Actor-Critic Modeling: Finding Optimal Strategy in ICU Environments
Reinforcement learning (RL) is mechanized to learn from experience. It solves the problem in sequential decisions by optimizing reward-punishment through experimentation of the distinct actions in an environment. Unlike supervised learning models, RL lacks static input-output mappings and the objective of minimization of a vector error. However, to find out an optimal strategy, it is crucial to learn both continuous feedback from training data and the offline rules of the experiences with no explicit dependence on online samples. In this paper, we present a study of a multi-agent RL framework which involves a Critic in semi-offline mode criticizing over an online Actor-Critic network, namely, Critic-over-Actor-Critic (CoAC) model, in finding optimal treatment plan of ICU patients as well as optimal strategy in a combative battle game. For further validation, we also examine the model in the adversarial assignment.  more » « less
Award ID(s):
2144772
PAR ID:
10427495
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
1356 to 1361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose Adversarially Trained Actor Critic (ATAC), a new model-free algorithm for offline reinforcement learning (RL) under insufficient data coverage, based on the concept of relative pessimism. ATAC is designed as a two-player Stackelberg game: A policy actor competes against an adversarially trained value critic, who finds data-consistent scenarios where the actor is inferior to the data-collection behavior policy. We prove that, when the actor attains no regret in the two-player game, running ATAC produces a policy that provably 1) outperforms the behavior policy over a wide range of hyperparameters that control the degree of pessimism, and 2) competes with the best policy covered by data with appropriately chosen hyperparameters. Compared with existing works, notably our framework offers both theoretical guarantees for general function approximation and a deep RL implementation scalable to complex environments and large datasets. In the D4RL benchmark, ATAC consistently outperforms state-of-the-art offline RL algorithms on a range of continuous control tasks. 
    more » « less
  2. Score-based generative models like the diffusion model have been testified to be effective in modeling multi-modal data from image generation to reinforcement learning (RL). However, the inference process of diffusion model can be slow, which hinders its usage in RL with iterative sampling. We propose to apply the consistency model as an efficient yet expressive policy representation, namely consistency policy, with an actor-critic style algorithm for three typical RL settings: offline, offline-to-online and online. For offline RL, we demonstrate the expressiveness of generative models as policies from multi-modal data. For offline-to-online RL, the consistency policy is shown to be more computational efficient than diffusion policy, with a comparable performance. For online RL, the consistency policy demonstrates significant speedup and even higher average performances than the diffusion policy. 
    more » « less
  3. Diffusion policies have achieved superior performance in imitation learning and offline reinforcement learning (RL) due to their rich expressiveness. However, the conventional diffusion training procedure requires samples from target distribution, which is impossible in online RL since we cannot sample from the optimal policy. Backpropagating policy gradient through the diffusion process incurs huge computational costs and instability, thus being expensive and not scalable. To enable efficient training of diffusion policies in online RL, we generalize the conventional denoising score matching by reweighting the loss function. The resulting Reweighted Score Matching (RSM) preserves the optimal solution and low computational cost of denoising score matching, while eliminating the need to sample from the target distribution and allowing learning to optimize value functions. We introduce two tractable reweighted loss functions to solve two commonly used policy optimization problems, policy mirror descent and max-entropy policy, resulting in two practical algorithms named Diffusion Policy Mirror Descent (DPMD) and Soft Diffusion Actor-Critic (SDAC). We conducted comprehensive comparisons on MuJoCo benchmarks. The empirical results show that the proposed algorithms outperform recent diffusion-policy online RLs on most tasks, and the DPMD improves more than 120% over soft actor-critic on Humanoid and Ant. 
    more » « less
  4. Despite intense efforts in basic and clinical research, an individualized ventilation strategy for critically ill patients remains a major challenge. Recently, dynamic treatment regime (DTR) with reinforcement learning (RL) on electronic health records (EHR) has attracted interest from both the healthcare industry and machine learning research community. However, most learned DTR policies might be biased due to the existence of confounders. Although some treatment actions non-survivors received may be helpful, if confounders cause the mortality, the training of RL models guided by long-term outcomes (e.g., 90-day mortality) would punish those treatment actions causing the learned DTR policies to be suboptimal. In this study, we develop a new deconfounding actor-critic network (DAC) to learn optimal DTR policies for patients. To alleviate confounding issues, we incorporate a patient resampling module and a confounding balance module into our actor-critic framework. To avoid punishing the effective treatment actions non-survivors received, we design a short-term reward to capture patients' immediate health state changes. Combining short-term with long-term rewards could further improve the model performance. Moreover, we introduce a policy adaptation method to successfully transfer the learned model to new-source small-scale datasets. The experimental results on one semi-synthetic and two different real-world datasets show the proposed model outperforms the state-of-the-art models. The proposed model provides individualized treatment decisions for mechanical ventilation that could improve patient outcomes. 
    more » « less
  5. Recent successes of Reinforcement Learning (RL) allow an agent to learn policies that surpass human experts but suffers from being time-hungry and data-hungry. By contrast, human learning is significantly faster because prior and general knowledge and multiple information resources are utilized. In this paper, we propose a Planner-Actor-Critic architecture for huMAN-centered planning and learning (PACMAN), where an agent uses its prior, high-level, deterministic symbolic knowledge to plan for goal-directed actions, and also integrates the Actor-Critic algorithm of RL to fine-tune its behavior towards both environmental rewards and human feedback. This work is the first unified framework where knowledge-based planning, RL, and human teaching jointly contribute to the policy learning of an agent. Our experiments demonstrate that PACMAN leads to a significant jump-start at the early stage of learning, converges rapidly and with small variance, and is robust to inconsistent, infrequent, and misleading feedback. 
    more » « less