Assistive robot arms can help humans by partially automating their desired tasks. Consider an adult with motor impairments controlling an assistive robot arm to eat dinner. The robot can reduce the number of human inputs — and how precise those inputs need to be — by recognizing what the human wants (e.g., a fork) and assisting for that task (e.g., moving towards the fork). Prior research has largely focused on learning the human’s task and providing meaningful assistance. But as the robot learns and assists, we also need to ensure that the human understands the robot’s intent (e.g., does the human know the robot is reaching for a fork?). In this paper, we study the effects of communicating learned assistance from the robot back to the human operator. We do not focus on the specific interfaces used for communication. Instead, we develop experimental and theoretical models of a) how communication changes the way humans interact with assistive robot arms, and b) how robots can harness these changes to better align with the human’s intent. We first conduct online and in-person user studies where participants operate robots that provide partial assistance, and we measure how the human’s inputs change with and without communication. With communication, we find that humans are more likely to intervene when the robot incorrectly predicts their intent, and more likely to release control when the robot correctly understands their task. We then use these findings to modify an established robot learning algorithm so that the robot can correctly interpret the human’s inputs when communication is present. Our results from a second in-person user study suggest that this combination of communication and learning outperforms assistive systems that isolate either learning or communication. See videos here: https://youtu.be/BET9yuVTVU4
more »
« less
Helping People Through Space and Time: Assistance as a Perspective on Human-Robot Interaction
As assistive robotics has expanded to many task domains, comparing assistive strategies among the varieties of research becomes increasingly difficult. To begin to unify the disparate domains into a more general theory of assistance, we present a definition of assistance, a survey of existing work, and three key design axes that occur in many domains and benefit from the examination of assistance as a whole. We first define an assistance perspective that focuses on understanding a robot that is in control of its actions but subordinate to a user’s goals. Next, we use this perspective to explore design axes that arise from the problem of assistance more generally and explore how these axes have comparable trade-offs across many domains. We investigate how the assistive robot handles other people in the interaction, how the robot design can operate in a variety of action spaces to enact similar goals, and how assistive robots can vary the timing of their actions relative to the user’s behavior. While these axes are by no means comprehensive, we propose them as useful tools for unifying assistance research across domains and as examples of how taking a broader perspective on assistance enables more cross-domain theorizing about assistance.
more »
« less
- Award ID(s):
- 1943072
- PAR ID:
- 10327642
- Date Published:
- Journal Name:
- Frontiers in Robotics and AI
- Volume:
- 8
- ISSN:
- 2296-9144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many robot-delivered health interventions aim to support people longitudinally at home to complement or replace in-clinic treat- ments. However, there is little guidance on how robots can support collaborative goal setting (CGS). CGS is the process in which a person works with a clinician to set and modify their goals for care; it can improve treatment adherence and efficacy. However, for home-deployed robots, clinicians will have limited availability to help set and modify goals over time, which necessitates that robots support CGS on their own. In this work, we explore how robots can facilitate CGS in the context of our robot CARMEN (Cognitively Assistive Robot for Motivation and Neurorehabilitation), which delivers neurorehabilitation to people with mild cognitive impairment (PwMCI). We co-designed robot behaviors for supporting CGS with clinical neuropsychologists and PwMCI, and prototyped them on CARMEN. We present feedback on how PwMCI envision these behaviors supporting goal progress and motivation during an intervention. We report insights on how to support this process with home-deployed robots and propose a framework to support HRI researchers interested in exploring this both in the context of cognitively assistive robots and beyond. This work supports design- ing and implementing CGS on robots, which will ultimately extend the efficacy of robot-delivered health interventions.more » « less
-
Much prior work on creating social agents that assist users relies on preconceived assumptions of what it means to be helpful. For example, it is common to assume that a helpful agent just assists with achieving a user’s objective. However, as assistive agents become more widespread, human-agent interactions may be more ad-hoc, providing opportunities for unexpected agent assistance. How would this affect human notions of an agent’s helpfulness? To investigate this question, we conducted an exploratory study (N=186) where participants interacted with agents displaying unexpected, assistive behaviors in a Space Invaders game and we studied factors that may influence perceived helpfulness in these interactions. Our results challenge the idea that human perceptions of the helpfulness of unexpected agent assistance can be derived from a universal, objective definition of help. Also, humans will reciprocate unexpected assistance, but might not always consider that they are in fact helping an agent. Based on our findings, we recommend considering personalization and adaptation when designing future assistive behaviors for prosocial agents that may try to help users in unexpected situations.more » « less
-
Using a dual-task paradigm, we explore how robot actions, performance, and the introduction of a secondary task influence human trust and engagement. In our study, a human supervisor simultaneously engages in a target-tracking task while supervising a mobile manipulator performing an object collection task. The robot can either autonomously collect the object or ask for human assistance. The human supervisor also has the choice to rely on or interrupt the robot. Using data from initial experiments, we model the dynamics of human trust and engagement using a linear dynamical system (LDS). Furthermore, we develop a human action model to define the probability of human reliance on the robot. Our model suggests that participants are more likely to interrupt the robot when their trust and engagement are low during high-complexity collection tasks. Using Model Predictive Control (MPC), we design an optimal assistance-seeking policy. Evaluation experiments demonstrate the superior performance of the MPC policy over the baseline policy for most participants.more » « less
-
Shared control systems can make complex robot teleoperation tasks easier for users. These systems predict the user’s goal, determine the motion required for the robot to reach that goal, and combine that motion with the user’s input. Goal prediction is generally based on the user’s control input (e.g., the joystick signal). In this paper, we show that this prediction method is especially effective when users follow standard noisily optimal behavior models. In tasks with input constraints like modal control, however, this effectiveness no longer holds, so additional sources for goal prediction can improve assistance. We implement a novel shared control system that combines natural eye gaze with joystick input to predict people’s goals online, and we evaluate our system in a real-world, COVID-safe user study. We find that modal control reduces the efficiency of assistance according to our model, and when gaze provides a prediction earlier in the task, the system’s performance improves. However, gaze on its own is unreliable and assistance using only gaze performs poorly. We conclude that control input and natural gaze serve different and complementary roles in goal prediction, and using them together leads to improved assistance.more » « less
An official website of the United States government

