skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gaze Complements Control Input for Goal Prediction During Assisted Teleoperation
Shared control systems can make complex robot teleoperation tasks easier for users. These systems predict the user’s goal, determine the motion required for the robot to reach that goal, and combine that motion with the user’s input. Goal prediction is generally based on the user’s control input (e.g., the joystick signal). In this paper, we show that this prediction method is especially effective when users follow standard noisily optimal behavior models. In tasks with input constraints like modal control, however, this effectiveness no longer holds, so additional sources for goal prediction can improve assistance. We implement a novel shared control system that combines natural eye gaze with joystick input to predict people’s goals online, and we evaluate our system in a real-world, COVID-safe user study. We find that modal control reduces the efficiency of assistance according to our model, and when gaze provides a prediction earlier in the task, the system’s performance improves. However, gaze on its own is unreliable and assistance using only gaze performs poorly. We conclude that control input and natural gaze serve different and complementary roles in goal prediction, and using them together leads to improved assistance.  more » « less
Award ID(s):
1943072
PAR ID:
10327640
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Robotics science and systems
ISSN:
2330-7668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wagner, A.R.; null (Ed.)
    Collaborative robots that provide anticipatory assistance are able to help people complete tasks more quickly. As anticipatory assistance is provided before help is explicitly requested, there is a chance that this action itself will influence the person’s future decisions in the task. In this work, we investigate whether a robot’s anticipatory assistance can drive people to make choices different from those they would otherwise make. Such a study requires measuring intent, which itself could modify intent, resulting in an observer paradox. To combat this, we carefully designed an experiment to avoid this effect. We considered several mitigations such as the careful choice of which human behavioral signals we use to measure intent and designing unobtrusive ways to obtain these signals. We conducted a user study (𝑁=99) in which participants completed a collaborative object retrieval task: users selected an object and a robot arm retrieved it for them. The robot predicted the user’s object selection from eye gaze in advance of their explicit selection, and then provided either collaborative anticipation (moving toward the predicted object), adversarial anticipation (moving away from the predicted object), or no anticipation (no movement, control condition). We found trends and participant comments suggesting people’s decision making changes in the presence of a robot anticipatory motion and this change differs depending on the robot’s anticipation strategy. 
    more » « less
  2. We present the Human And Robot Multimodal Observations of Natural Interactive Collaboration (HARMONIC) dataset. This is a large multimodal dataset of human interactions with a robotic arm in a shared autonomy setting designed to imitate assistive eating. The dataset provides human, robot, and environmental data views of 24 different people engaged in an assistive eating task with a 6-degree-of-freedom (6-DOF) robot arm. From each participant, we recorded video of both eyes, egocentric video from a head-mounted camera, joystick commands, electromyography from the forearm used to operate the joystick, third-person stereo video, and the joint positions of the 6-DOF robot arm. Also included are several features that come as a direct result of these recordings, such as eye gaze projected onto the egocentric video, body pose, hand pose, and facial keypoints. These data streams were collected specifically because they have been shown to be closely related to human mental states and intention. This dataset could be of interest to researchers studying intention prediction, human mental state modeling, and shared autonomy. Data streams are provided in a variety of formats such as video and human-readable CSV and YAML files. 
    more » « less
  3. We present a shared control paradigm that improves a user’s ability to operate complex, dynamic systems in potentially dangerous environments without a priori knowledge of the user’s objective. In this paradigm, the role of the autonomous partner is to improve the general safety of the system without constraining the user’s ability to achieve unspecified behaviors. Our approach relies on a data-driven,model-based representation of the joint human-machine system to evaluate, in parallel, a significant number of potential inputs that the user may wish to provide. These samples are used to (1)predict the safety of the system over a receding horizon, and (2)minimize the influence of the autonomous partner. The resulting shared control algorithm maximizes the authority allocated to the human partner to improve their sense of agency, while improving safety. We evaluate the efficacy of our shared control algorithm with a human subjects study (n=20) conducted in two simulated environments: a balance bot and a race car. During the experiment, users are free to operate each system however they would like (i.e., there is no specified task) and are only asked to try to avoid unsafe regions of the state space. Using modern computational resources (i.e., GPUs) our approach is able to consider more than 10,000 potential trajectories at each time step in a control loop running at 100Hz for the balance bot and 60Hzfor the race car. The results of the study show that our shared control paradigm improves system safety without knowledge of the user’s goal, while maintaining high-levels of user satisfaction and low-levels of frustration. Our code is available online athttps://github.com/asbroad/mpmisharedcontrol. 
    more » « less
  4. We propose a novel criterion for evaluating user input for human-robot interfaces for known tasks. We use the mode insertion gradient (MIG)—a tool from hybrid control theory—as a filtering criterion that instantaneously assesses the impact of user actions on a dynamic system over a time window into the future. As a result, the filter is permissive to many chosen strategies, minimally engaging, and skill-sensitive—qualities desired when evaluating human actions. Through a human study with 28 healthy volunteers, we show that the criterion exhibits a low, but significant, negative correlation between skill level, as estimated from task-specific measures in unassisted trials, and the rate of controller intervention during assistance. Moreover, a MIG-based filter can be utilized to create a shared control scheme for training or assistance. In the human study, we observe a substantial training effect when using a MIG-based filter to perform cart-pendulum inversion, particularly when comparing improvement via the RMS error measure. Using simulation of a controlled spring-loaded inverted pendulum (SLIP) as a test case, we observe that the MIG criterion could be used for assistance to guarantee either task completion or safety of a joint human-robot system, while maintaining the system’s flexibility with respect to user-chosen strategies. 
    more » « less
  5. Abstract As technology advances, Human-Robot Interaction (HRI) is boosting overall system efficiency and productivity. However, allowing robots to be present closely with humans will inevitably put higher demands on precise human motion tracking and prediction. Datasets that contain both humans and robots operating in the shared space are receiving growing attention as they may facilitate a variety of robotics and human-systems research. Datasets that track HRI with rich information other than video images during daily activities are rarely seen. In this paper, we introduce a novel dataset that focuses on social navigation between humans and robots in a future-oriented Wholesale and Retail Trade (WRT) environment (https://uf-retail-cobot-dataset.github.io/). Eight participants performed the tasks that are commonly undertaken by consumers and retail workers. More than 260 minutes of data were collected, including robot and human trajectories, human full-body motion capture, eye gaze directions, and other contextual information. Comprehensive descriptions of each category of data stream, as well as potential use cases are included. Furthermore, analysis with multiple data sources and future directions are discussed. 
    more » « less