skip to main content


Title: Impact of Socio-Economic Factors on Female Students’ Enrollments in Science, Technology, Engineering and Mathematics and Workplace Challenges in Bangladesh
There is nearly equal number of male and female student enrollments in primary and secondary level of education in Bangladesh, but at the tertiary level and at the job sector, a sharp drop in the number of women is observed. This paper explores the current status of female students’ enrollment in science, technology, engineering, and mathematics (STEM) at the tertiary education system in Bangladesh. It is followed by explorations of challenges women face in technical workplace. Quantitative data for the paper come from more than 1.18 million students at tertiary level from eight public and private universities for three academic years from 2018 to 2020. In addition, a qualitative study was conducted with 48 participants in pre- and during COVID-19 eras to understand barriers hampering women in STEM-related education and jobs. The paper provides a guideline for future policies to ensure inclusive space for growth and retention for women in STEM.  more » « less
Award ID(s):
1937849
NSF-PAR ID:
10327666
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Behavioral Scientist
ISSN:
0002-7642
Page Range / eLocation ID:
000276422210785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An ongoing focus of engineering education research is on increasing the number of women in engineering. Previous studies have primarily focused on examining why the number of women enrolled in engineering colleges remains persistent low. In doing so, while we have gained better understanding of the challenges and barriers women encountered and factors that contribute to such negative experiences, it also, as some scholars have pointed out, has cast a deficit frame to such matters. In this study, we take on a positive stand where we focus on women undergraduate students who not only “stay” but also succeed in engineering programs (that is, our definition of thriving) as a way to locate the personal and institutional factors that facilitate such positive outcomes. Our initial pilot study involved two female engineering undergraduate students at an R1 university. Each student was interviewed three times. While each of the interviews in the sequence had slightly different focus, the overall goal was to understand the women’s autobiographic and educational experiences leading to their paths to engineering and participation in the engineering project teams. The inductive thematic analysis revealed several primary findings which subsequently played a major role in developing a codebook for the current study. Building upon what is learned from the pilot study, the current study uses a layered multi-case study design involving three institutions: a public/private Ivy League and statutory land-grand research university in the Northeast, a public land-grant research university in the Midwest, and a public land-grant research university in the Southwest which is also designated as MSI/HSI. In addition to the interview method, data collection also contains documents and artifacts. For the purpose of this paper, we zone in onto the data collected in the first interviews, known as the “life history” where we mainly learn about the women undergraduate participants’ personal-familial contexts that contribute their entry to majoring in engineering as identified by the women themselves. Preliminary findings indicate that: (1) our participants tend to have supportive families; (2) while all experienced gender biases, not everyone has formed a critical consciousness of sexism; and (3) being able to actually engage “doing” something and creating a product is key to the women’s finding joy in engineering and associating self with the field/profession. It is important to note that the second interviews are underway which focuses on the educational journey of the participants in relation to engineering identity development and project team experiences. The ultimate goal for the study is to develop a theoretical framework speaking to a multifaceted model of forces (micro as autobiographic, macro as institutional, and in-between or middle-level as team-based) in shaping women’s entry and advance in engineering programs – one that recognizes the variations in institutional type, resource availability, and structural and cultural characteristics and traditions in teams, but uses such differences to show possibilities of more versatile ways for diversifying pathways for women and other minoritized groups to thrive in engineering. 
    more » « less
  2. An ongoing focus of engineering education research is on increasing the number of women in engineering. Previous studies have primarily focused on examining why the number of women enrolled in engineering colleges remains persistently low. In doing so, while we have gained better understanding of the challenges and barriers that women encountered and factors that contribute to such negative experiences, it also, as some scholars have pointed out, has cast a deficit frame on such matters. In this study, we take on a positive stand where we focus on women undergraduate students who not only “stay” but also succeed in engineering programs (that is, our definition of thriving) as a way to locate the personal and institutional factors that facilitate such positive outcomes. Our initial pilot study involved two female engineering undergraduate students at an R1 university. Each student was interviewed three times. While each of the interviews in the sequence had a slightly different focus, the overall goal was to understand the women’s autobiographic and educational experiences leading to their paths to engineering and participation in the engineering project teams. The inductive thematic analysis revealed several primary findings which subsequently played a major role in developing a codebook for the current study. Building upon what is learned from the pilot study, the current study uses a layered multi-case study design involving three institutions: a public/private Ivy League and statutory land-grand research university in the Northeast, a public land-grant research university in the Midwest, and a public land-grant research university in the Southwest which is also designated as MSI/HSI. In addition to the interview method, data collection also contains documents and artifacts. For this paper, we zone in onto the data collected in the first interviews, known as the “life history” where we mainly learn about the women undergraduate participants’ personal-familial contexts that contribute to their entry to majoring in engineering as identified by the women themselves. Preliminary findings indicate that: (1) our participants tend to have supportive families; (2) while all experienced gender biases, not everyone has formed a critical consciousness of sexism; and (3) being able to actually engage by “doing” something and creating a product is key to the women’s finding joy in engineering and associating themself with the field/profession. It is important to note that the second interviews, which focus on the educational journey of the participants in relation to engineering identity development and project team experiences, are underway. The ultimate goal for the study is to develop a theoretical framework speaking to a multifaceted model of forces (micro as autobiographic, macro as institutional, and in-between or middle-level as team-based) in shaping women’s entry and advance in engineering programs. This framework will recognize the variations in institutional type, resource availability, and structural and cultural characteristics and traditions in teams. It will also use such differences to show possibilities of more versatile ways for diversifying pathways for women and other minoritized groups to thrive in engineering. 
    more » « less
  3. Despite increased calls for the need for more diverse engineers and significant efforts to “move the needle,” the composition of students, especially women, earning bachelor’s degrees in engineering has not significantly changed over the past three decades. Prior research by Klotz and colleagues (2014) showed that sustainability as a topic in engineering education is a potentially positive way to increase women’s interest in STEM at the transition from high school to college. Additionally, sustainability has increasingly become a more prevalent topic in engineering as the need for global solutions that address the environmental, social, and economic aspects of sustainability have become more pressing. However, few studies have examined students’ sustainability related career for upper-level engineering students. This time point is a critical one as students are transitioning from college to industry or other careers where they may be positioned to solve some of these pressing problems. In this work, we answer the question, “What differences exist between men and women’s attitudes about sustainability in upper-level engineering courses?” in order to better understand how sustainability topics may promote women’s interest in and desire to address these needs in their future careers. We used pilot data from the CLIMATE survey given to 228 junior and senior civil, environmental, and mechanical engineering students at a large East Coast research institution. This survey included questions about students’ career goals, college experiences, beliefs about engineering, and demographic information. The students surveyed included 62 third-year students, 96 fourth-year students, 29 fifth-year students, and one sixth-year student. In order to compare our results of upper-level students’ attitudes about sustainability, we asked the same questions as the previous study focused on first-year engineering students, “Which of these topics, if any, do you hope to directly address in your career?” The list of topics included energy (supply or demand), climate change, environmental degradation, water supply, terrorism and war, opportunities for future generations, food availability, disease, poverty and distribution of resources, and opportunities for women and/or minorities. As the answer to this question was binary, either “Yes,” or “No,” Pearson’s Chi-squared test with Yates’ continuity correction was performed on each topic for this question, comparing men and women’s answers. We found that women are significantly more likely to want to address water supply, food availability, and opportunities for woman and/or minorities in their careers than their male peers. Conversely, men were significantly more likely to want to address energy and terrorism and war in their careers than their female peers. Our results begin to help us understand the particular differences that men and women, even far along in their undergraduate engineering careers, may have in their desire to address certain sustainability outcomes in their careers. This work begins to let us understand certain topics and pathways that may support women in engineering as well as provides comparisons to prior work on early career undergraduate students. Our future work will include looking at particular student experiences in and out of the classroom to understand how these sustainability outcome expectations develop. 
    more » « less
  4. Giving a voice to marginalized groups and understanding the double bind is critical, especially after the Charlotte, VA protests and the white supremacist discourse that has pervaded our country. The result of the discourse, more subtle beliefs about white superiority and institutional barriers is an overrepresentation of women of color (WOC) in the leaky STEM pipeline and thus the loss of their presence and expertise. The absence of WOC hinders knowledge production and innovation that is essential for societal advancements and scientific discovery. The “chilly climate” is often cited as an explanation for the loss of WOC from STEM. However, interactions that allow the “chilly climate” to persist have yet to be characterized. This lack of understanding can inhibit the professional engineering identity construction of WOC. Additionally, engineering education research typically focuses on a single identity dimension such as gender or socio-economic status. These studies connect an identity dimension to student outcomes and few studies clarify how the identity is situated within the social context of the engineering culture. Consequently, a need exist to examine how the engineering culture impacts multiple components of identity and intersecting identities of WOC. To address this gap, our study illuminates the intersections of identity of WOC and how they perceive the double bind of race and gender within the context of their engineering education. The data reported here are a part of a larger, sequential mixed-methods study (N=276) of undergraduate female engineering students at a large Midwestern research university. This project applies the framework of intersectionality with the following scales: Engineering Identity, Ethnic Identity, Womanist Identity, Microaggressions, and Depression. We use intersectionality to investigate the interaction between intersecting social identities and educational conditions. We introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender, racial, and intersecting identity development of WOC. We utilize the microaggressions scale, in order to develop quantitative measures of gender-racial discrimination in STEM and compare to previous research. We also included the Patient Health Questionnaire (PHQ-9), an instrument for measuring depression, to assess health outcomes of respondents’ experiences of gender-racial microaggressions. Our three emergent findings suggest instrument accuracy and provide insight into the identity and depression subscales. Factor analysis established a basis to refine our quantitative survey instruments, and indicated that 23 items could offer greater accuracy than the original 54 items instrument. Second, the majority of participants report a high level of identification with engineering. This result rebuffs the long-held stereotypes that females are less interested in engineering. Third, a significant portion of female respondents self-reported PHQ-9 scores in the 15-19 range, which corresponds with a “major depression, moderately severe” provisional diagnosis, the second-highest in severity in the PHQ-9 provisional diagnosis scale. These elevated levels of depression correlated significantly to frequent instances of microaggressions. These preliminary findings are providing never-before seen insight into the experiences of WOC in engineering. Our results suggest a path to accurately describe the experiences of WOC in engineering, while revealing options for improving inclusion efforts. 
    more » « less
  5. Giving a voice to marginalized groups and understanding the double bind is critical, especially after the Charlotte, VA protests and the white supremacist discourse that has pervaded our country. The result of the discourse, more subtle beliefs about white superiority and institutional barriers is an overrepresentation of women of color (WOC) in the leaky STEM pipeline and thus the loss of their presence and expertise. The absence of WOC hinders knowledge production and innovation that is essential for societal advancements and scientific discovery. The “chilly climate” is often cited as an explanation for the loss of WOC from STEM. However, interactions that allow the “chilly climate” to persist have yet to be characterized. This lack of understanding can inhibit the professional engineering identity construction of WOC. Additionally, engineering education research typically focuses on a single identity dimension such as gender or socio-economic status. These studies connect an identity dimension to student outcomes and few studies clarify how the identity is situated within the social context of the engineering culture. Consequently, a need exist to examine how the engineering culture impacts multiple components of identity and intersecting identities of WOC. To address this gap, our study illuminates the intersections of identity of WOC and how they perceive the double bind of race and gender within the context of their engineering education. The data reported here are a part of a larger, sequential mixed-methods study (N=276) of undergraduate female engineering students at a large Midwestern research university. This project applies the framework of intersectionality with the following scales: Engineering Identity, Ethnic Identity, Womanist Identity, Microaggressions, and Depression. We use intersectionality to investigate the interaction between intersecting social identities and educational conditions. We introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender, racial, and intersecting identity development of WOC. We utilize the microaggressions scale, in order to develop quantitative measures of gender-racial discrimination in STEM and compare to previous research. We also included the Patient Health Questionnaire (PHQ-9), an instrument for measuring depression, to assess health outcomes of respondents’ experiences of gender-racial microaggressions. Our three emergent findings suggest instrument accuracy and provide insight into the identity and depression subscales. Factor analysis established a basis to refine our quantitative survey instruments, and indicated that 23 items could offer greater accuracy than the original 54 items instrument. Second, the majority of participants report a high level of identification with engineering. This result rebuffs the long-held stereotypes that females are less interested in engineering. Third, a significant portion of female respondents self-reported PHQ-9 scores in the 15-19 range, which corresponds with a “major depression, moderately severe” provisional diagnosis, the second-highest in severity in the PHQ-9 provisional diagnosis scale. These elevated levels of depression correlated significantly to frequent instances of microaggressions. These preliminary findings are providing never-before seen insight into the experiences of WOC in engineering. Our results suggest a path to accurately describe the experiences of WOC in engineering, while revealing options for improving inclusion efforts. 
    more » « less