skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In situ nanoscale evaluation of pressure-induced changes in structural morphology of phosphonium phosphate ionic liquid at single-asperity contacts
In this work, we perform atomic force microscopy (AFM) experiments to evaluate in situ the dependence of the structural morphology of trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P 6,6,6,14 ][DEHP]) ionic liquid (IL) on applied pressure. The experimental results obtained upon sliding a diamond-like-carbon-coated silicon AFM tip on mechanically polished steel at an applied pressure up to 5.5 ± 0.3 GPa indicate a structural transition of confined [P 6,6,6,14 ][DEHP] molecules. This pressure-induced morphological change of [P 6,6,6,14 ][DEHP] IL leads to the generation of a lubricious, solid-like interfacial layer, whose growth rate increases with applied pressure and temperature. The structural variation of [P 6,6,6,14 ][DEHP] IL is proposed to derive from the well-ordered layering of the polar groups of ions separated by the apolar tails. These results not only shed new light on the structural organization of phosphonium-based ILs under elevated pressure, but also provide novel insights into the normal pressure-dependent lubrication mechanisms of ILs in general.  more » « less
Award ID(s):
2042304
PAR ID:
10327677
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
12
Issue:
1
ISSN:
2046-2069
Page Range / eLocation ID:
413 to 419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since the interface between ionic liquids (ILs) and solids always plays a critical role in important applications such as coating, lubrication, energy storage and catalysis, it is essential to unravel the molecular structure and dynamics of ILs confined to solid surfaces. Here we report direct observation of a unique double-layering quantized growth of three IL ( i.e. [Emim][FAP], [Bmim][FAP] and [Hmim][FAP]) nanofilms on mica. AFM results show that the IL nanofilms initially grow only by covering more surface areas at the constant film thickness of 2 monolayers (ML) until a quantized increase in the film thickness by another 2 ML occurs. Based on the AFM results, we propose a double-layering model describing the molecular structure of IL cations and anions on the mica surface. The interesting double-layering structure can be explained as the result of several competing interactions at the IL–mica interface. Meanwhile, the time-dependent AFM results indicate that the topography of IL nanofilms could change with time and mobility of the nanofilm is lower for ILs with longer alkyl chains, which can be attributed to the stronger solvophobic interaction. The findings here have important implications on the molecular structure and dynamics of ILs confined to solid surfaces. 
    more » « less
  2. The phenomenon of ionic liquid (IL) nanoconfinement within a copolymer/IL membrane reportedly enhances membrane selectivity, solubility, and transport in gas separations. Also, the copolymer/IL membrane morphology has been found to affect IL stability at high transmembrane pressures. In this work, a combined mesoscopic dynamics simulation and hybrid grand canonical Monte Carlo/molecular dynamics (GCMC-MD) simulations were carried out to investigate the morphologies, as well as CO2/CH4 gas diffusivities, solubilities, and selectivities of polystyrene-b-poly(ethylene oxide) (PS-b-PEO)/1-Ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) and PS-b-PEO/1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf2N]) membranes. The latter simulations focused on nanoconfined ILs in the copolymer/IL phase boundaries at 2.5 and 5 nm confinement lengths. The investigated systems were four nanoconfined ILs, i.e., PS/[EMIM][SCN]/PEO (the IL forming a separate microphase, denoted IL-Micro), PS/[EMIM][Tf2N]/PEO, PS/[EMIM][SCN]-PEO/PS (the IL distributed in the PEO phase, denoted IL-PEO), and PS/[EMIM][Tf2N]-PEO/PS, and five control systems, i.e., PS/PEO/PS, bulk PS, bulk PEO, bulk [EMIM][SCN], and bulk [EMIM][Tf2N]. Based on the mesoscopic dynamics simulation results, the dominant membrane morphologies at IL loadings of <50 vol % were lamellar or cylindrical (favorable for both IL stability at high transmembrane pressures if the bedding planes are horizontal, i.e. at 90° to the nominal direction of the transmembrane pressure gradient) with the IL-PEO or IL-Micro phases. Also, there was an overall 50% match between the observed PS-b-PEO/[EMIM][SCN] and PS-b-PEO/[EMIM][Tf2N] membrane morphologies. Based on the MD simulation results, both CO2 and CH4 diffusivities were the smallest in the bulk PS (control) and highest in the PS/[EMIM][Tf2N]/PEO system (IL-Micro between the PS and PEO phases) at both confinement lengths. The CO2 diffusivities were, on average, larger when the confinement length increased to 5 nm. The GCMC-MD results indicated that the CO2 solubility in the IL-Micro phases was higher than in the corresponding bulk ILs at both confinement lengths, with the PS/[EMIM][Tf2N]/PEO system exhibiting the highest CO2 solubility, followed by the PS/[EMIM][SCN]/PEO system. Additionally, the permselectivities of the nanoconfined IL systems were, on average, 40–50% larger than those of the bulk systems, with the highest permselectivity observed for PS/[EMIM][Tf2N]/PEO at the confinement length of 5 nm. Overall, the IL nanoconfinement between the PS and PEO phases (IL-Micro) leads to significant improvements in the CO2/CH4 permselectivities, suggesting that strategies to create nanoconfined IL morphologies in the copolymer/IL membranes are very promising for optimizing the membrane gas separation performance. 
    more » « less
  3. Abstract Ionic liquids (ILs) are promising electrolytes for high‐performance Li‐ion batteries (LIBs), which can significantly improve the safety and energy storage capacity. Although extensive experimental and computational studies have reported, further exploration is needed to understand the properties of IL systems, their microscopic structures and dynamics, and the behavior of Li ions in ILs. We report here results of molecular dynamics simulations as a function of electric field for Li diffusion in two IL systems, [EMIM][TFSI] and [BMIM][TFSI] doped with various concentrations of LiTFSI. We find that the migration of each individual Li ion depends largely on its micro‐environment, leading to differences by factors of up to 100 in the diffusivity. The structural and dynamical properties indicate that Li diffusion is affected significantly by the coordination and interaction with the oxygen species in the TFSI anions. Moreover, the IL cations also contribute to the Li diffusion mechanism by attenuating the Li–TFSI interaction. 
    more » « less
  4. Abstract While many mechanistic studies have focused on the lubricious properties of ionic liquids (ILs) on ideally smooth surfaces, little is known about the mechanisms by which ILs lubricate contacts with nanoscale roughness. Here, substrates with controlled density of nanoparticles are prepared to examine the influence of nanoscale roughness on the lubrication by 1‐hexyl‐3‐methyl imidazolium bis(trifluoromethylsulfonyl)imide. Atomic force microscopy is employed to investigate adhesion, hydrodynamic slip, and friction at the lubricated contact as a function of surface topography for the first time. This study reveals that nanoscale roughness has a significant influence on the slip along the surface and leads to a maximum slip length on the substrates with intermediate nanoparticle density. This coincides with the minimum friction coefficient at sufficiently small contact stresses, likely due to the lower resistance of the IL film to shear. However, at the higher pressures applied with a sharp tip, friction increases with nanoparticle density, indicating that the IL is not able to alleviate the increased dissipation due to roughness. The results of this work point toward a complex influence of the surface topology on friction. This study can help design ILs and nanopatterned substrates for tribological applications and nano‐ and microfluidics. 
    more » « less
  5. Long-term preservation of proteins at room temperature continues to be a major challenge. Towards using ionic liquids (ILs) to address this challenge, here we present a combination of experiments and simulations to investigate changes in lysozyme upon rehydration from IL mixtures using two imidazolium-based ILs (1-ethyl-3-methylimidazolium ethylsulfate, [EMIM][EtSO 4 ] and 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][Et 2 PO 4 ]). Various spectroscopic experiments and molecular dynamics simulations are performed to ascertain the structure and activity of lysozyme. Circular dichroism spectroscopy confirms that lysozyme maintains its secondary structure upon rehydration, even after 295 days. Increasing the IL concentration decreases the activity of lysozyme and is ultimately quenched at sufficiently high IL concentrations, but the rehydration of lysozyme from high IL concentrations completely restores its activity. Such rehydration occurs in the most common lysozyme activity assay, but without careful attention, this effect on the IL concentration can be overlooked. From simulations we observe occupation of [EMIM + ] ions near the vicinity of the active site and the ligand-lysozyme complex is less stable in the presence of ILs, which results in the reduction of lysozyme activity. Upon rehydration, fast leaving of [EMIM + ] is observed and the availability of active site is restored. In addition, suppression of structural fluctuations is also observed when in high IL concentrations, which also explains the decrease of activity. This structure suppression is recovered after undergoing rehydration. The return of native protein structure and activity indicates that after rehydration lysozyme returns to its original state. Our results also suggest a simple route to protein recovery following extended storage. 
    more » « less