skip to main content


Title: In situ nanoscale evaluation of pressure-induced changes in structural morphology of phosphonium phosphate ionic liquid at single-asperity contacts
In this work, we perform atomic force microscopy (AFM) experiments to evaluate in situ the dependence of the structural morphology of trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P 6,6,6,14 ][DEHP]) ionic liquid (IL) on applied pressure. The experimental results obtained upon sliding a diamond-like-carbon-coated silicon AFM tip on mechanically polished steel at an applied pressure up to 5.5 ± 0.3 GPa indicate a structural transition of confined [P 6,6,6,14 ][DEHP] molecules. This pressure-induced morphological change of [P 6,6,6,14 ][DEHP] IL leads to the generation of a lubricious, solid-like interfacial layer, whose growth rate increases with applied pressure and temperature. The structural variation of [P 6,6,6,14 ][DEHP] IL is proposed to derive from the well-ordered layering of the polar groups of ions separated by the apolar tails. These results not only shed new light on the structural organization of phosphonium-based ILs under elevated pressure, but also provide novel insights into the normal pressure-dependent lubrication mechanisms of ILs in general.  more » « less
Award ID(s):
2042304
NSF-PAR ID:
10327677
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
12
Issue:
1
ISSN:
2046-2069
Page Range / eLocation ID:
413 to 419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While phosphonium phosphate ionic liquids (ILs) have been evaluated as additives for engine oils owing to their excellent physico‐chemical properties, miscibility with hydrocarbon fluids, and promising tribological properties, their lubrication mechanism is still not established. Here, atomic force microscopy (AFM) nanotribological experiments are performed using diamond‐like carbon‐coated silicon tips sliding on air‐oxidized steel in neat trihexyltetradecylphosphonium bis(2‐ethylhexyl)phosphate IL. The AFM results indicate a reduction in friction only after the removal of the native oxide layer from steel. Laterally resolved analyses of the steel surface chemistry reveal a higher concentration of bis(2‐ethylhexyl)phosphate ions adsorbed on regions where the native oxide is mechanically removed together with a change in surface electrostatic potential. These surface modifications are proposed to be induced by a change in adsorption configuration of bis(2‐ethylhexyl)phosphate anions on metallic iron compared to their configuration on iron oxide together with a reduction of surface roughness, which lead to the formation of a densely packed, lubricious boundary layer only on metallic iron.

     
    more » « less
  2. Since the interface between ionic liquids (ILs) and solids always plays a critical role in important applications such as coating, lubrication, energy storage and catalysis, it is essential to unravel the molecular structure and dynamics of ILs confined to solid surfaces. Here we report direct observation of a unique double-layering quantized growth of three IL ( i.e. [Emim][FAP], [Bmim][FAP] and [Hmim][FAP]) nanofilms on mica. AFM results show that the IL nanofilms initially grow only by covering more surface areas at the constant film thickness of 2 monolayers (ML) until a quantized increase in the film thickness by another 2 ML occurs. Based on the AFM results, we propose a double-layering model describing the molecular structure of IL cations and anions on the mica surface. The interesting double-layering structure can be explained as the result of several competing interactions at the IL–mica interface. Meanwhile, the time-dependent AFM results indicate that the topography of IL nanofilms could change with time and mobility of the nanofilm is lower for ILs with longer alkyl chains, which can be attributed to the stronger solvophobic interaction. The findings here have important implications on the molecular structure and dynamics of ILs confined to solid surfaces. 
    more » « less
  3. Abstract

    Ionic liquids (ILs) are promising electrolytes for high‐performance Li‐ion batteries (LIBs), which can significantly improve the safety and energy storage capacity. Although extensive experimental and computational studies have reported, further exploration is needed to understand the properties of IL systems, their microscopic structures and dynamics, and the behavior of Li ions in ILs. We report here results of molecular dynamics simulations as a function of electric field for Li diffusion in two IL systems, [EMIM][TFSI] and [BMIM][TFSI] doped with various concentrations of LiTFSI. We find that the migration of each individual Li ion depends largely on its micro‐environment, leading to differences by factors of up to 100 in the diffusivity. The structural and dynamical properties indicate that Li diffusion is affected significantly by the coordination and interaction with the oxygen species in the TFSI anions. Moreover, the IL cations also contribute to the Li diffusion mechanism by attenuating the Li–TFSI interaction.

     
    more » « less
  4. Abstract

    While many mechanistic studies have focused on the lubricious properties of ionic liquids (ILs) on ideally smooth surfaces, little is known about the mechanisms by which ILs lubricate contacts with nanoscale roughness. Here, substrates with controlled density of nanoparticles are prepared to examine the influence of nanoscale roughness on the lubrication by 1‐hexyl‐3‐methyl imidazolium bis(trifluoromethylsulfonyl)imide. Atomic force microscopy is employed to investigate adhesion, hydrodynamic slip, and friction at the lubricated contact as a function of surface topography for the first time. This study reveals that nanoscale roughness has a significant influence on the slip along the surface and leads to a maximum slip length on the substrates with intermediate nanoparticle density. This coincides with the minimum friction coefficient at sufficiently small contact stresses, likely due to the lower resistance of the IL film to shear. However, at the higher pressures applied with a sharp tip, friction increases with nanoparticle density, indicating that the IL is not able to alleviate the increased dissipation due to roughness. The results of this work point toward a complex influence of the surface topology on friction. This study can help design ILs and nanopatterned substrates for tribological applications and nano‐ and microfluidics.

     
    more » « less
  5. The theoretical promise of ionic liquids (ILs) as ‘green’ designer solvents that can be tuned to facilitate key steps of lignocellulosic biomass processing has not been fully realized due to the sheer number of possible cation–anion combinations and concerns about toxicity of this class of chemicals. Although computational methods are being applied to identify ILs with specific functions, such as dissolution of cellulose, they are not used to iteratively design new ionic liquids with the goal of simultaneously optimizing multiple criteria, such as performance and environmental safety. Here we describe a tiered computational approach to develop new ILs based on mixed quantum and molecular mechanics simulations, which, combined with analysis of physicochemical properties of ILs can be used to guide structural modifications to design both better performing task-specific and safer IL analogs. The increase in computing requirements of the proposed approach over structure-based statistical models is relatively modest; yet, our approach is more robust than these models, and far less costly than highly-accurate but very demanding large-scale molecular simulations. 
    more » « less