skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Signal Transduction Network Principles Underlying Bacterial Collective Behaviors
Bacteria orchestrate collective behaviors and accomplish feats that would be unsuccessful if carried out by a lone bacterium. Processes undertaken by groups of bacteria include bioluminescence, biofilm formation, virulence factor production, and release of public goods that are shared by the community. Collective behaviors are controlled by signal transduction networks that integrate sensory information and transduce the information internally. Here, we discuss network features and mechanisms that, even in the face of dramatically changing environments, drive precise execution of bacterial group behaviors. We focus on representative quorum-sensing and second-messenger cyclic dimeric GMP (c-di-GMP) signal relays. We highlight ligand specificity versus sensitivity, how small-molecule ligands drive discrimination of kin versus nonkin, signal integration mechanisms, single-input sensory systems versus coincidence detectors, and tuning of input-output dynamics via feedback regulation. We summarize how different features of signal transduction systems allow groups of bacteria to successfully interpret and collectively react to dynamically changing environments. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.  more » « less
Award ID(s):
1853602 1713731 2043238
PAR ID:
10327729
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annual Review of Microbiology
Volume:
76
Issue:
1
ISSN:
0066-4227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. O’Toole, George (Ed.)
    ABSTRACT Transitions between individual and communal lifestyles allow bacteria to adapt to changing environments. Bacteria must integrate information encoded in multiple sensory cues to appropriately undertake these transitions. Here, we investigate how two prevalent sensory inputs converge on biofilm morphogenesis: quorum sensing, which endows bacteria with the ability to communicate and coordinate group behaviors, and second messenger c-di-GMP signaling, which allows bacteria to detect and respond to environmental stimuli. We use Vibrio cholerae as our model system, the autoinducer AI-2 to modulate quorum sensing, and the polyamine norspermidine to modulate NspS-MbaA-mediated c-di-GMP production. Individually, AI-2 and norspermidine drive opposing biofilm phenotypes, with AI-2 repressing and norspermidine inducing biofilm formation. Surprisingly, however, when AI-2 and norspermidine are simultaneously detected, they act synergistically to increase biofilm biomass and biofilm cell density. We show that this effect is caused by quorum-sensing-mediated activation of nspS - mbaA expression, which increases the levels of NspS and MbaA, and in turn, c-di-GMP biosynthesis, in response to norspermidine. Increased MbaA-synthesized c-di-GMP activates the VpsR transcription factor, driving elevated expression of genes encoding key biofilm matrix components. Thus, in the context of biofilm morphogenesis in V. cholerae, quorum-sensing regulation of c-di-GMP-metabolizing receptor levels connects changes in cell population density to detection of environmental stimuli. IMPORTANCE The development of multicellular communities, known as biofilms, facilitates beneficial functions of gut microbiome bacteria and makes bacterial pathogens recalcitrant to treatment. Understanding how bacteria regulate the biofilm life cycle is fundamental to biofilm control in industrial processes and in medicine. Here, we demonstrate how two major sensory inputs—quorum-sensing communication and second messenger c-di-GMP signaling—jointly regulate biofilm morphogenesis in the global pathogen Vibrio cholerae. We characterize the mechanism underlying a surprising synergy between quorum-sensing and c-di-GMP signaling in controlling biofilm development. Thus, the work connects changes in cell population density to detection of environmental stimuli in a pathogen of clinical significance. 
    more » « less
  2. Not AvailableThe building and simulation of biological models is a valuable skill that can deepen student knowledge and promote systems thinking. Signal transduction networks are complex biological communication systems that regulate many interactions between an organism and its surrounding environment, creating dynamic behaviors. Bacterial chemotaxis exemplifies the basic principles of signal transduction and demonstrates core biology concepts like feedback inhibition, systems, and transfer and utilization of information. This system is ideal for learning about modeling. It contains a small number of components while still demonstrating key aspects of signal transduction: how an environmental signal is received and translated into a mechanical behavior and how feedback loops give rise to nonlinear dynamics. Using Cell Collective, we developed a model- and simulation-based lesson to help students grow their computational modeling skills while developing knowledge of these core concepts. Cell Collective and the lesson design allow students to build and simulate a model without extensive background knowledge of the technology or computer programming. It also targets common student misconceptions about the features of complex systems like emergent behaviors and randomness. The lesson contains all resources, assessment questions, and instructions needed for teaching signal transduction and having students practice modeling and system thinking. 
    more » « less
  3. Waldor, Matthew K. (Ed.)
    Bacterial biofilms are multicellular communities that collectively overcome environmental threats and clinical treatments. To regulate the biofilm lifecycle, bacteria commonly transduce sensory information via the second messenger molecule cyclic diguanylate (c-di-GMP). Using experimental and modeling approaches, we quantitatively capture c-di-GMP signal transmission via the bifunctional polyamine receptor NspS-MbaA, from ligand binding to output, in the pathogen Vibrio cholerae . Upon binding of norspermidine or spermidine, NspS-MbaA synthesizes or degrades c-di-GMP, respectively, which, in turn, drives alterations specifically to biofilm gene expression. A long-standing question is how output specificity is achieved via c-di-GMP, a diffusible molecule that regulates dozens of effectors. We show that NspS-MbaA signals locally to specific effectors, sensitizing V . cholerae to polyamines. However, local signaling is not required for specificity, as changes to global cytoplasmic c-di-GMP levels can selectively regulate biofilm genes. This work establishes the input–output dynamics underlying c-di-GMP signaling, which could be useful for developing bacterial manipulation strategies. 
    more » « less
  4. ABSTRACT Aggregation in social fishes has evolved to improve safety from predators. The individual interaction mechanisms that govern collective behavior are determined by the sensory systems that translate environmental information into behavior. In dynamic environments, shifts in conditions impede effective visual sensory perception in fish schools, and may induce changes in the collective response. Here, we consider whether environmental conditions that affect visual contrast modulate the collective response of schools to looming predators. By using a virtual environment to simulate four contrast levels, we tested whether the collective state of minnow fish schools was modified in response to a looming optical stimulus. Our results indicate that fish swam slower and were less polarized in lower contrast conditions. Additionally, schooling metrics known to be regulated by non-visual sensory systems tended to correlate better when contrast decreased. Over the course of the escape response, schools remained tightly formed and retained the capability of transferring social information. We propose that when visual perception is compromised, the interaction rules governing collective behavior are likely to be modified to prioritize ancillary sensory information crucial to maximizing chance of escape. Our results imply that multiple sensory systems can integrate to control collective behavior in environments with unreliable visual information. 
    more » « less
  5. Abstract Many bacteria inhabit thin layers of water on solid surfaces both naturally in soils or on hosts or textiles and in the lab on agar hydrogels. In these environments, cells experience capillary forces, yet an understanding of how these forces shape bacterial collective behaviors remains elusive. Here, we show that the water menisci formed around bacteria lead to capillary attraction between cells while still allowing them to slide past one another. We develop an experimental apparatus that allows us to control bacterial collective behaviors by varying the strength and range of capillary forces. Combining 3D imaging and cell tracking with agent-based modeling, we demonstrate that capillary attraction organizes rod-shaped bacteria into densely packed, nematic groups, and profoundly influences their collective dynamics and morphologies. Our results suggest that capillary forces may be a ubiquitous physical ingredient in shaping microbial communities in partially hydrated environments. 
    more » « less