Rehabilitation of human motor function is an issue of growing significance, and human-interactive robots offer promising potential to meet the need. For the lower extremity, however, robot-aided therapy has proven challenging. To inform effective approaches to robotic gait therapy, it is important to better understand unimpaired locomotor control: its sensitivity to different mechanical contexts and its response to perturbations. The present study evaluated the behavior of 14 healthy subjects who walked on a motorized treadmill and overground while wearing an exoskeletal ankle robot. Their response to a periodic series of ankle plantar flexion torque pulses, delivered at periods different from, but sufficiently close to, their preferred stride cadence, was assessed to determine whether gait entrainment occurred, how it differed across conditions, and if the adapted motor behavior persisted after perturbation. Certain aspects of locomotor control were exquisitely sensitive to walking context, while others were not. Gaits entrained more often and more rapidly during overground walking, yet, in all cases, entrained gaits synchronized the torque pulses with ankle push-off, where they provided assistance with propulsion. Furthermore, subjects entrained to perturbation periods that required an adaption toward slower cadence, even though the pulses acted to accelerate gait, indicating a neural adaptation of locomotor control. Lastly, during 15 post-perturbation strides, the entrained gait period was observed to persist more frequently during overground walking. This persistence was correlated with the number of strides walked at the entrained gait period (i.e., longer exposure), which also indicated a neural adaptation. NEW & NOTEWORTHY We show that the response of human locomotion to physical interaction differs between treadmill and overground walking. Subjects entrained to a periodic series of ankle plantar flexion torque pulses that shifted their gait cadence, synchronizing ankle push-off with the pulses (so that they assisted propulsion) even when gait cadence slowed. Entrainment was faster overground and, on removal of torque pulses, the entrained gait period persisted more prominently overground, indicating a neural adaptation of locomotor control.
more »
« less
Human-Human Hand Interactions Aid Balance During Walking by Haptic Communication
Principles from human-human physical interaction may be necessary to design more intuitive and seamless robotic devices to aid human movement. Previous studies have shown that light touch can aid balance and that haptic communication can improve performance of physical tasks, but the effects of touch between two humans on walking balance has not been previously characterized. This study examines physical interaction between two persons when one person aids another in performing a beam-walking task. 12 pairs of healthy young adults held a force sensor with one hand while one person walked on a narrow balance beam (2 cm wide x 3.7 m long) and the other person walked overground by their side. We compare balance performance during partnered vs. solo beam-walking to examine the effects of haptic interaction, and we compare hand interaction mechanics during partnered beam-walking vs. overground walking to examine how the interaction aided balance. While holding the hand of a partner, participants were able to walk further on the beam without falling, reduce lateral sway, and decrease angular momentum in the frontal plane. We measured small hand force magnitudes (mean of 2.2 N laterally and 3.4 N vertically) that created opposing torque components about the beam axis and calculated the interaction torque, the overlapping opposing torque that does not contribute to motion of the beam-walker’s body. We found higher interaction torque magnitudes during partnered beam-walking vs . partnered overground walking, and correlation between interaction torque magnitude and reductions in lateral sway. To gain insight into feasible controller designs to emulate human-human physical interactions for aiding walking balance, we modeled the relationship between each torque component and motion of the beam-walker’s body as a mass-spring-damper system. Our model results show opposite types of mechanical elements (active vs . passive) for the two torque components. Our results demonstrate that hand interactions aid balance during partnered beam-walking by creating opposing torques that primarily serve haptic communication, and our model of the torques suggest control parameters for implementing human-human balance aid in human-robot interactions.
more »
« less
- Award ID(s):
- 1762211
- PAR ID:
- 10327731
- Date Published:
- Journal Name:
- Frontiers in Robotics and AI
- Volume:
- 8
- ISSN:
- 2296-9144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Physical human–robot interactions (pHRI) often provide mechanical force and power to aid walking without requiring voluntary effort from the human. Alternatively, principles of physical human–human interactions (pHHI) can inspire pHRI that aids walking by engaging human sensorimotor processes. We hypothesize that low-force pHHI can intuitively induce a person to alter their walking through haptic communication. In our experiment, an expert partner dancer influenced novice participants to alter step frequency solely through hand interactions. Without prior instruction, training, or knowledge of the expert’s goal, novices decreased step frequency 29% and increased step frequency 18% based on low forces (< 20 N) at the hand. Power transfer at the hands was 3–700 × smaller than what is necessary to propel locomotion, suggesting that hand interactions did not mechanically constrain the novice’s gait. Instead, the sign/direction of hand forces and power may communicate information about how to alter walking. Finally, the expert modulated her arm effective dynamics to match that of each novice, suggesting a bidirectional haptic communication strategy for pHRI that adapts to the human. Our results provide a framework for developing pHRI at the hand that may be applicable to assistive technology and physical rehabilitation, human-robot manufacturing, physical education, and recreation.more » « less
-
Robotic lower limb exoskeletons have been shown to successfully provide joint torques to assist human subjects during walking. Assisting the wearer during gait perturbations to prevent falls still poses a challenge due to specific requirements of the device, and complex bipedal dynamics of recovery. In this study, we present a hip exoskeleton device with pneumatically actuated abduction/adduction motion to provide hip torque for assisting with lateral balance. The device was designed to be wearable, allow integration with previously developed wearable gait perturbation detection system and knee exoskeleton, and produce fast actuation to provide assistive joint torque during gait perturbations. We present the results of the experimental benchtop tests of the device. The maximum torque output and rate of torque development were characterized using a load cell. The maximum angular displacement, with added weights to simulate the leg inertia, was recorded using an inertial measurement unit sensor. Lastly, a preliminary test on a human subject demonstrated that the device, when exerting instantaneous hip abduction torque during swing walking gait, can effectively modify foot placement in the lateral direction. This work contributes towards developing exoskeleton control strategies for assistance during gait perturbations to prevent falls.more » « less
-
Ferretti, Gianni (Ed.)Many anticipated physical human-robot interaction (pHRI) applications in the near future are overground tasks such as walking assistance. For investigating the biomechanics of human movement during pHRI, this work presents Ophrie, a novel interactive robot dedicated for physical interaction tasks with a human in overground settings. Unique design requirements for pHRI were considered in implementing the one-arm mobile robot, such as the low output impedance and the ability to apply small interaction forces. The robot can measure the human arm stiffness, an important physical quantity that can reveal human biomechanics during overground pHRI, while the human walks alongside the robot. This robot is anticipated to enable novel pHRI experiments and advance our understanding of intuitive and effective overground pHRI.more » « less
-
One of the common hydrotherapeutic exercises is walking in water because buoyancy reduces joint loading and increases mobility for a patient. The fluid drag forces (the forces that act on the person from the fluid in the direction opposing the direction of motion) cause changes in muscle activations, as walking in water changes the forces that act on the leg compared with overground walking. Here, through a series of numerical simulations, we quantify how the flow forces that act on the leg due to its motion in water change over a walking gait cycle. We show that besides drag forces that act on the walking legs and peak when the leg is accelerated forward, relatively large lateral forces (in the direction perpendicular to the direction of motion) also act on the leg. These forces are caused by the rapid acceleration of the opposite leg when the two legs are close, creating an asymmetric pressure distribution around the leg. These results are unexpected and could have significant implications for designing hydrotherapeutic plans for patients by considering the lateral forces besides the drag forces that act on the body while walking in water.more » « less
An official website of the United States government

