Advanced genomic and molecular profiling technologies accelerated the enlightenment of the regulatory mechanisms behind cancer development and progression, and the targeted therapies in patients. Along this line, intense studies with immense amounts of biological information have boosted the discovery of molecular biomarkers. Cancer is one of the leading causes of death around the world in recent years. Elucidation of genomic and epigenetic factors in Breast Cancer (BRCA) can provide a roadmap to uncover the disease mechanisms. Accordingly, unraveling the possible systematic connections between-omics data types and their contribution to BRCA tumor progression is crucial. In this study, we have developed a novel machine learning (ML) based integrative approach for multi-omics data analysis. This integrative approach combines information from gene expression (mRNA), microRNA (miRNA) and methylation data. Due to the complexity of cancer, this integrated data is expected to improve the prediction, diagnosis and treatment of disease through patterns only available from the 3-way interactions between these 3-omics datasets. In addition, the proposed method bridges the interpretation gap between the disease mechanisms that drive onset and progression. Our fundamental contribution is the 3 Multi-omics integrative tool (3Mint). This tool aims to perform grouping and scoring of groups using biological knowledge. Another major goal is improved gene selection via detection of novel groups of cross-omics biomarkers. Performance of 3Mint is assessed using different metrics. Our computational performance evaluations showed that the 3Mint classifies the BRCA molecular subtypes with lower number of genes when compared to the miRcorrNet tool which uses miRNA and mRNA gene expression profiles in terms of similar performance metrics (95% Accuracy). The incorporation of methylation data in 3Mint yields a much more focused analysis. The 3Mint tool and all other supplementary files are available at https://github.com/malikyousef/3Mint/ .
more »
« less
Re-Identification of Patient Subgroups in Uveal Melanoma
Uveal melanoma (UM) is a comparatively rare cancer but requires serious consideration since patients with developing metastatic UM survive only for about 6–12 months. Fortunately, increasingly large multi-omics databases allow us to further understand cancer initiation and development. Moreover, previous studies have observed that associations between copy number aberrations (CNA) or methylation (MET) versus messenger RNA (mRNA) expression have affected these processes. From that, we decide to explore the effect of these associations on a case study of UM. Also, the current subtypes of UM display its weak association with biological phenotypes and its lack of therapy suggestions. Therefore, the re-identification of molecular subtypes is a pressing need. In this study, we recruit three omics profiles, including CNA, MET, and mRNA, in a UM cohort from The Cancer Genome Atlas (TCGA). Firstly, we identify two sets of genes, CNAexp and METexp, whose CNA and MET significantly correlated with their corresponding mRNA, respectively. Then, single and integrative analyses of the three data types are performed using the PINSPlus tool. As a result, we discover two novel integrative subgroups, IntSub1 and IntSub2, which could be a useful alternative classification for UM patients in the future. To further explore molecular events behind each subgroup, we identify their subgroup-specific genes computationally. Accordingly, the highest expressed genes among IntSub1-specific genes are mostly enriched with immune-related processes. On the other hand, IntSub2-specific genes are highly associated with cellular cation homeostasis, which responds effectively to chemotherapy using ion channel inhibitor drugs. In addition, we detect that the two integrative subgroups show different age-related risks and survival rates. These discoveries can influence the frequency of metastatic surveillance and support medical practitioners to choose an appropriate treatment regime.
more »
« less
- PAR ID:
- 10327820
- Date Published:
- Journal Name:
- Frontiers in Oncology
- Volume:
- 11
- ISSN:
- 2234-943X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cancer is an umbrella term that includes a range of disorders, from those that are fast-growing and lethal to indolent lesions with low or delayed potential for progression to death. The treatment options, as well as treatment success, are highly dependent on the correct subtyping of individual patients. With the advancement of high-throughput platforms, we have the opportunity to differentiate among cancer subtypes from a holistic perspective that takes into consideration phenomena at different molecular levels (mRNA, methylation, etc.). This demands powerful integrative methods to leverage large multi-omics datasets for a better subtyping. Here we introduce Subtyping Multi-omics using a Randomized Transformation (SMRT), a new method for multi-omics integration and cancer subtyping. SMRT offers the following advantages over existing approaches: (i) the scalable analysis pipeline allows researchers to integrate multi-omics data and analyze hundreds of thousands of samples in minutes, (ii) the ability to integrate data types with different numbers of patients, (iii) the ability to analyze un-matched data of different types, and (iv) the ability to offer users a convenient data analysis pipeline through a web application. We also improve the efficiency of our ensemble-based, perturbation clustering to support analysis on machines with memory constraints. In an extensive analysis, we compare SMRT with eight state-of-the-art subtyping methods using 37 TCGA and two METABRIC datasets comprising a total of almost 12,000 patient samples from 28 different types of cancer. We also performed a number of simulation studies. We demonstrate that SMRT outperforms other methods in identifying subtypes with significantly different survival profiles. In addition, SMRT is extremely fast, being able to analyze hundreds of thousands of samples in minutes. The web application is available at http://SMRT.tinnguyen-lab.com . The R package will be deposited to CRAN as part of our PINSPlus software suite.more » « less
-
The rapid growth of diverse -omics datasets has made multiomics data integration crucial in cancer research. This study adapts the expectation–maximization routine for the joint latent variable modeling of multiomics patient profiles. By combining this approach with traditional biological feature selection methods, this study optimizes latent distribution, enabling efficient patient clustering from well-studied cancer types with reduced computational expense. The proposed optimization subroutines enhance survival analysis and improve runtime performance. This article presents a framework for distinguishing cancer subtypes and identifying potential biomarkers for breast cancer. Key insights into individual subtype expression and function were obtained through differentially expressed gene analysis and pathway enrichment for BRCA patients. The analysis compared 302 tumor samples to 113 normal samples across 60,660 genes. The highly upregulated gene COL10A1, promoting breast cancer progression and poor prognosis, and the consistently downregulated gene CDG300LG, linked to brain metastatic cancer, were identified. Pathway enrichment analysis revealed similarities in cellular matrix organization pathways across subtypes, with notable differences in functions like cell proliferation regulation and endocytosis by host cells. GO Semantic Similarity analysis quantified gene relationships in each subtype, identifying potential biomarkers like MATN2, similar to COL10A1. These insights suggest deeper relationships within clusters and highlight personalized treatment potential based on subtypes.more » « less
-
With advances in high-throughput technology, molecular disease subtyping by high-dimensional omics data has been recognized as an effective approach for identifying subtypes of complex diseases with distinct disease mechanisms and prognoses. Conventional cluster analysis takes omics data as input and generates patient clusters with similar gene expression pattern. The omics data, however, usually contain multifaceted cluster structures that can be defined by different sets of genes. If the gene set associated with irrelevant clinical variables (e.g., sex or age) dominates the clustering process, the resulting clusters may not capture clinically meaningful disease subtypes. This motivates the development of a clustering framework with guidance from a prespecified disease outcome, such as lung function measurement or survival, in this paper. We propose two disease subtyping methods by omics data with outcome guidance using a generative model or a weighted joint likelihood. Both methods connect an outcome association model and a disease subtyping model by a latent variable of cluster labels. Compared to the generative model, weighted joint likelihood contains a data-driven weight parameter to balance the likelihood contributions from outcome association and gene cluster separation, which improves generalizability in independent validation but requires heavier computing. Extensive simulations and two real applications in lung disease and triple-negative breast cancer demonstrate superior disease subtyping performance of the outcome-guided clustering methods in terms of disease subtyping accuracy, gene selection and outcome association. Unlike existing clustering methods, the outcome-guided disease subtyping framework creates a new precision medicine paradigm to directly identify patient subgroups with clinical association.more » « less
-
Abstract BackgroundThe recent development of high-throughput sequencing has created a large collection of multi-omics data, which enables researchers to better investigate cancer molecular profiles and cancer taxonomy based on molecular subtypes. Integrating multi-omics data has been proven to be effective for building more precise classification models. Most current multi-omics integrative models use either an early fusion in the form of concatenation or late fusion with a separate feature extractor for each omic, which are mainly based on deep neural networks. Due to the nature of biological systems, graphs are a better structural representation of bio-medical data. Although few graph neural network (GNN) based multi-omics integrative methods have been proposed, they suffer from three common disadvantages. One is most of them use only one type of connection, either inter-omics or intra-omic connection; second, they only consider one kind of GNN layer, either graph convolution network (GCN) or graph attention network (GAT); and third, most of these methods have not been tested on a more complex classification task, such as cancer molecular subtypes. ResultsIn this study, we propose a novel end-to-end multi-omics GNN framework for accurate and robust cancer subtype classification. The proposed model utilizes multi-omics data in the form of heterogeneous multi-layer graphs, which combine both inter-omics and intra-omic connections from established biological knowledge. The proposed model incorporates learned graph features and global genome features for accurate classification. We tested the proposed model on the Cancer Genome Atlas (TCGA) Pan-cancer dataset and TCGA breast invasive carcinoma (BRCA) dataset for molecular subtype and cancer subtype classification, respectively. The proposed model shows superior performance compared to four current state-of-the-art baseline models in terms of accuracy, F1 score, precision, and recall. The comparative analysis of GAT-based models and GCN-based models reveals that GAT-based models are preferred for smaller graphs with less information and GCN-based models are preferred for larger graphs with extra information.more » « less
An official website of the United States government

