skip to main content


Title: COVID-19 and Undergraduates with Disabilities: Challenges Resulting from the Rapid Transition to Online Course Delivery for Students with Disabilities in Undergraduate STEM at Large-Enrollment Institutions
The COVID-19 pandemic caused nearly all colleges and universities to transition in-person courses to an online format. In this study, we explored how the rapid transition to online instruction during the COVID-19 pandemic affected students with disabilities. We interviewed 66 science, technology, engineering, and math (STEM) undergraduates with disabilities at seven large-enrollment institutions during Spring 2020. We probed to what extent students were able to access their existing accommodations, to what extent the online environment required novel accommodations, and what factors prevented students from being properly accommodated in STEM courses. Using inductive coding, we identified that students were unable to access previously established accommodations, such as reduced-distraction testing and note-takers. We also found that the online learning environment presented novel challenges for students with disabilities that may have been lessened with the implementation of accommodations. Finally, we found that instructors making decisions about what accommodations were appropriate for students and disability resource centers neglecting to contact students after the transition to online instruction prevented students from receiving the accommodations that they required in STEM courses during the COVID-19 pandemic. This study illuminates current gaps in the support of students with disabilities and pinpoints ways to make online STEM learning environments more inclusive for students with disabilities.  more » « less
Award ID(s):
2012998
NSF-PAR ID:
10327843
Author(s) / Creator(s):
; ; ;
Editor(s):
Momsen, Jennifer
Date Published:
Journal Name:
CBE—Life Sciences Education
Volume:
20
Issue:
3
ISSN:
1931-7913
Page Range / eLocation ID:
ar36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The COVID-19 pandemic resulted in nearly all universities transitioning their in-person courses to online instruction. Recent work from our research team conducted in Spring 2020 established that the immediate transition to online learning presented novel challenges for students with disabilities: students were unable to access previously established accommodations and there was a lack of information from Disability Resource Centers (DRCs) about adapting accommodations to online environments. In this study, we aimed to determine the extent to which these issues still were present 1 year later. In Spring 2021, we conducted a survey of 114 students with disabilities who were registered with the DRC and taking online science courses at a public research-intensive institution. We used our previous interviews with students to develop closed- and open-ended questions to assess the extent to which students with disabilities were being properly accommodated in their courses, document any new accommodations they were using, and elicit any recommendations they had for improving their experiences in online science courses. We used logistic regression to analyze the closed-ended data and inductive coding to analyze the open-ended data. We found that more than half of students with disabilities reported not being properly accommodated, and this was more likely to be reported by students who experienced new challenges related to online learning. When students were asked what accommodations they would have wanted, students often described accommodations that were being offered to some students but were not universally implemented. This study summarizes recommendations for making online science learning environments more inclusive for students with disabilities. 
    more » « less
  2. In March 2020, the global COVID-19 pandemic forced universities across the United States to immediately stop face-to-face activities and transition to virtual instruction. While this transition was not easy for anyone, the shift to online learning was especially difficult for STEM courses, particularly engineering, which has a strong practical/laboratory component. Additionally, underrepresented students (URMs) in engineering experienced a range of difficulties during this transition. The purpose of this paper is to highlight underrepresented engineering students’ experiences as a result of COVID-19. In particular, we aim to highlight stories shared by participants who indicated a desire to share their experience with their instructor. In order to better understand these experiences, research participants were asked to share a story, using the novel data collection platform SenseMaker, based on the following prompt: Imagine you are chatting with a friend or family member about the evolving COVID-19 crisis. Tell them about something you have experienced recently as an engineering student. Conducting a SenseMaker study involves four iterative steps: 1) Initiation is the process of designing signifiers, testing, and deploying the instrument; 2) Story Collection is the process of collecting data through narratives; 3) Sense-making is the process of exploring and analyzing patterns of the collection of narratives; and 4) Response is the process of amplifying positive stories and dampening negative stories to nudge the system to an adjacent possible (Van der Merwe et al. 2019). Unlike traditional surveys or other qualitative data collection methods, SenseMaker encourages participants to think more critically about the stories they share by inviting them to make sense of their story using a series of triads and dyads. After completing their narrative, participants were asked a series of triadic, dyadic, and sentiment-based multiple-choice questions (MCQ) relevant to their story. For one MCQ, in particular, participants were required to answer was “If you could do so without fear of judgment or retaliation, who would you share this story with?” and were given the following options: 1) Family 2) Instructor 3) Peers 4) Prefer not to answer 5) Other. A third of the participants indicated that they would share their story with their instructor. Therefore, we further explored this particular question. Additionally, this paper aims to highlight this subset of students whose primary motivation for their actions were based on Necessity. High-level qualitative findings from the data show that students valued Grit and Perseverance, recent experiences influenced their Sense of Purpose, and their decisions were majorly made based on Intuition. Chi-squared tests showed that there were not any significant differences between race and the desire to share with their instructor, however, there were significant differences when factoring in gender suggesting that gender has a large impact on the complexity of navigating school during this time. Lastly, ~50% of participants reported feeling negative or extremely negative about their experiences, ~30% reported feeling neutral, and ~20% reported feeling positive or extremely positive about their experiences. In the study, a total of 500 micro-narratives from underrepresented engineering students were collected from June – July 2020. Undergraduate and graduate students were recruited for participation through the researchers’ personal networks, social media, and through organizations like NSBE. Participants had the option to indicate who is able to read their stories 1) Everyone 2) Researchers Only, or 3) No one. This work presents qualitative stories of those who granted permission for everyone to read. 
    more » « less
  3. Many undergraduate students encounter struggle as they navigate academic, financial, and social contexts of higher education. The transition to emergency online instruction during the Spring of 2020 due to the COVID-19 pandemic exacerbated these struggles. To assess college students’ struggles during the transition to online learning in undergraduate biology courses, we surveyed a diverse collection of students ( n = 238) at an R2 research institution in the Southeastern United States. Students were asked if they encountered struggles and whether they were able to overcome them. Based on how students responded, they were asked to elaborate on (1) how they persevered without struggle, (2) how they were able to overcome their struggles, or (3) what barriers they encountered that did not allow them to overcome their struggles. Each open-ended response was thematically coded to address salient patterns in students’ ability to either persevere or overcome their struggle. We found that during the transition to remote learning, 67% of students experienced struggle. The most reported struggles included: shifts in class format, effective study habits, time management, and increased external commitments. Approximately, 83% of those struggling students were able to overcome their struggle, most often citing their instructor’s support and resources offered during the transition as reasons for their success. Students also cited changes in study habits, and increased confidence or belief that they could excel within the course as ways in which they overcame their struggles. Overall, we found no link between struggles in the classroom and any demographic variables we measured, which included race/ethnicity, gender expression, first-generation college students, transfer student status, and commuter student status. Our results highlight the critical role that instructors play in supporting student learning during these uncertain times by promoting student self-efficacy and positive-growth mindset, providing students with the resources they need to succeed, and creating a supportive and transparent learning environment. 
    more » « less
  4. null (Ed.)
    This research paper studies the challenges that mathematics faculty and graduate teaching assistants (GTAs) faced when moving active and collaborative calculus courses from in-person to virtual instruction. As part of a larger pedagogical change project (described below), the math department at a public Research-1 university began transitioning pre-calculus and calculus courses to an active and collaborative learning (ACL) format in Fall 2019. The change began with the introduction of collaborative worksheets in recitations which were led by GTAs and supported by undergraduate learning assistants (LAs). Students recitation periods collaboratively solving the worksheet problems on whiteboards. When COVID-19 forced the rapid transition to online teaching, these ACL efforts faced an array of challenges. Faculty and GTA reflections on the changes to teaching and learning provide insight into how instructional staff can be supported in implementing ACL across various modes of instruction. The calculus teaching change efforts discussed in this paper are part of an NSF-supported project that aims to make ACL the default method of instruction in highly enrolled gateway STEM courses across the institution. The theoretical framework for the project builds on existing work on grassroots change in higher education (Kezar and Lester, 2011) to study the effect of communities of practice on changing teaching culture. The project uses course-based communities of practice (Wenger, 1999) that include instructors, GTAs, and LAs working together to design and enact teaching change in the targeted courses alongside ongoing professional development for GTAs and LAs. Six faculty and five GTAs involved in the teaching change effort in mathematics were interviewed after the Spring 2020 semester ended. Interview questions focused on faculty and GTA experiences implementing active learning after the rapid transition to online teaching. A grounded coding scheme was used to identify common themes in the challenges faced by instructors and GTAs as they moved online and in the impacts of technology, LA support, and the department community of practice on the move to online teaching. Technology, including both access and capabilities, emerged as a common barrier to student engagement. A particular barrier was students’ reluctance to share video or participate orally in sessions that were being recorded, making group work more difficult than it had been in a physical classroom. In addition, most students lacked access to a tablet for freehand writing, presenting a significant hurdle for sharing mathematical notation when physical whiteboards were no longer an option. These challenges point to the importance of incorporating flexibility in active learning implementation and in the professional development that supports teaching changes toward active learning, since what is conceived for a collaborative physical classroom may be implemented in a much different environment. The full paper will present a detailed analysis of the data to better understand how faculty and GTA experiences in the transition to online delivery can inform planning and professional development as the larger institutional change effort moves forward both in mathematics and in other STEM fields. 
    more » « less
  5. null (Ed.)
    Student perceptions of the complete online transition of two CS courses in response to the COVID-19 pandemic Due to the COVID-19 pandemic, universities across the globe switched from traditional Face-to-Face (F2F) course delivery to completely online. Our university declared during our Spring break that students would not return to campus, and that all courses must be delivered fully online starting two weeks later. This was challenging to both students and instructors. In this evidence-based practice paper, we present results of end-of-semester student surveys from two Spring 2020 CS courses: a programming intensive CS2 course, and a senior theory course in Formal Languages and Automata (FLA). Students indicated course components they perceived as most beneficial to their learning, before and then after the online transition, and preferences for each regarding online vs. F2F. By comparing student reactions across courses, we gain insights on which components are easily adapted to online delivery, and which require further innovation. COVID was unfortunate, but gave a rare opportunity to compare students’ reflections on F2F instruction with online instructional materials for half a semester vs. entirely online delivery of the same course during the second half. The circumstances are unique, but we were able to acquire insights for future instruction. Some course components were perceived to be more useful either before or after the transition, and preferences were not the same in the two courses, possibly due to differences in the courses. Students in both courses found prerecorded asynchronous lectures significantly less useful than in-person lectures. For CS2, online office hours were significantly less useful than in-person office hours, but we found no significant difference in FLA. CS2 students felt less supported by their instructor after the online transition, but no significant difference was indicated by FLA students. FLA students found unproctored online exams offered through Canvas more stressful than in-person proctored exams, but the opposite was indicated by CS2 students. CS2 students indicated that visual materials from an eTextbook were more useful to them after going online than before, but FLA students indicated no significant difference. Overall, students in FLA significantly preferred the traditional F2F version of the course, while no significant difference was detected for CS2 students. We did not find significant effects from gender on the preference of one mode over the other. A serendipitous outcome was learning that some changes forced by circumstance should be considered for long term adoption. Offering online lab sessions and online exams where the questions are primarily multiple choice are possible candidates. However, we found that students need to feel the presence of their instructor to feel properly supported. To determine what course components need further improvement before transitioning to fully online mode, we computed a logistic regression model. The dependent variable is the student's preference for F2F or fully online. The independent variables are the course components before and after the online transition. For both courses, in-person lectures were a significant factor negatively affecting students' preferences of the fully online mode. Similarly, for CS2, in-person labs and in-person office hours were significant factors pushing students’ preferences toward F2F mode. 
    more » « less