skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New Online Accommodations Are Not Enough: The Mismatch between Student Needs and Supports Given for Students with Disabilities during the COVID-19 Pandemic
ABSTRACT The COVID-19 pandemic resulted in nearly all universities transitioning their in-person courses to online instruction. Recent work from our research team conducted in Spring 2020 established that the immediate transition to online learning presented novel challenges for students with disabilities: students were unable to access previously established accommodations and there was a lack of information from Disability Resource Centers (DRCs) about adapting accommodations to online environments. In this study, we aimed to determine the extent to which these issues still were present 1 year later. In Spring 2021, we conducted a survey of 114 students with disabilities who were registered with the DRC and taking online science courses at a public research-intensive institution. We used our previous interviews with students to develop closed- and open-ended questions to assess the extent to which students with disabilities were being properly accommodated in their courses, document any new accommodations they were using, and elicit any recommendations they had for improving their experiences in online science courses. We used logistic regression to analyze the closed-ended data and inductive coding to analyze the open-ended data. We found that more than half of students with disabilities reported not being properly accommodated, and this was more likely to be reported by students who experienced new challenges related to online learning. When students were asked what accommodations they would have wanted, students often described accommodations that were being offered to some students but were not universally implemented. This study summarizes recommendations for making online science learning environments more inclusive for students with disabilities.  more » « less
Award ID(s):
2012998
PAR ID:
10327844
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Microbiology & Biology Education
Volume:
23
Issue:
1
ISSN:
1935-7877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Momsen, Jennifer (Ed.)
    The COVID-19 pandemic caused nearly all colleges and universities to transition in-person courses to an online format. In this study, we explored how the rapid transition to online instruction during the COVID-19 pandemic affected students with disabilities. We interviewed 66 science, technology, engineering, and math (STEM) undergraduates with disabilities at seven large-enrollment institutions during Spring 2020. We probed to what extent students were able to access their existing accommodations, to what extent the online environment required novel accommodations, and what factors prevented students from being properly accommodated in STEM courses. Using inductive coding, we identified that students were unable to access previously established accommodations, such as reduced-distraction testing and note-takers. We also found that the online learning environment presented novel challenges for students with disabilities that may have been lessened with the implementation of accommodations. Finally, we found that instructors making decisions about what accommodations were appropriate for students and disability resource centers neglecting to contact students after the transition to online instruction prevented students from receiving the accommodations that they required in STEM courses during the COVID-19 pandemic. This study illuminates current gaps in the support of students with disabilities and pinpoints ways to make online STEM learning environments more inclusive for students with disabilities. 
    more » « less
  2. null (Ed.)
    Increasingly, support for students with disabilities in post-secondary education has boosted enrollment and graduates rates. Yet, such successes are not translated to doctoral degrees. For example, in 2018, the National Science Foundation reported 3% of math and computer science doctorate recipients identified as having a visual limitation while 1.2% identified as having a hearing limitation. To better understand why few students with disabilities pursue PhDs in computing and related fields, we conducted an interview study with 19 current and former graduate students who identified as blind or low vision, or deaf or hard of hearing. We asked participants about challenges or barriers they encountered in graduate school. We asked about accommodations they received, or did not receive, and about different forms of support. We found that a wide range of inaccessibility issues in research, courses, and in managing accommodations impacted student progress. Contributions from this work include identifying two forms of access inequality that emerged: (1) access differential: the gap between the access that non/disabled students experience, and (2) inequitable access: the degree of inadequacy of existing accommodations to address inaccessibility. 
    more » « less
  3. Abstract BackgroundWhile laboratory practices have traditionally been conducted in-person, online asynchronous laboratory learning has been growing in popularity due to increased enrollments and the recent pandemic, creating opportunities for accessibility. In remote asynchronous learning environments, students have more autonomy to choose how they participate with other students in their laboratory classes. Communities of practice and self-efficacy may provide insights into why students are making their participation choices and how they are interacting with peers in asynchronous physics laboratory courses. ResultsIn this mixed methods, explanatory sequential study, students in an introductory physics remote asynchronous laboratory (N = 272) were surveyed about their social learning perceptions and their physics laboratory self-efficacy. Three groups of students were identified based upon their self-reported participation level of communication with peers in asynchronous courses: (1)contributors, who communicated with peers via instant messaging software and posted comments; (2)lurkers, who read discussions on instant messaging software without posting comments; and (3)outsiders, who neither read nor posted comments to peer discussions. Analysis of variance with post hoc Tukey tests showed significant differences in social learning perceptions among contributors, lurkers, and outsiders, with a large effect size, and differences between contributing and lurking students’ self-efficacy, with a small effect size. Qualitative findings from open-ended survey responses indicated contributors felt the structure of the learning environment, or their feeling of connectedness with other students, facilitated their desire to contribute. Many lurkers felt they could get what they needed through vicarious learning, and many expressed their lack of confidence to post relevant, accurate comments. Outsiders felt they did not have to, did not want to, or could not connect with other students. ConclusionsWhile the classroom laboratory traditionally requires all students to participate in the learning process through active socialization with other students, students in a remote asynchronous laboratory may still gain the benefits of participation through lurking. Instructors may consider lurking in an online or remote science laboratory as a legitimate form of participation and engagement. 
    more » « less
  4. The pandemic of COVID-19 is disrupting engineering education globally, at all levels of education.While distance education is nothing new, the pandemic of COVID-19 forced instructors to rapidly move their courses online whether or not they had ever received prior training in online education. In particular, there is very little literature to guide instructors in supporting students in online engineering design or project-based courses. The purpose of this research is to examine engineering students’ report of social support in their project and design-based courses at a large research university during the move to online instruction due to COVID-19in the Spring 2020 semester and to provide recommendations for instructors teaching these types of courses online in the future.Our study is framed by social constructivism and social capital theory.We surveyed undergraduate engineering and engineering technology students(n=235) across undergraduate levels during the final week of the Spring 2019 semester.Survey questions included open-ended prompts about social supports and overall experience with the transition to online learning as well as name and resource generator questions focused on specific people and types of interactions that changed during the pandemic. We used qualitative content analysis of the open-ended responses along with comparisons of the name and resource generator to develop recommendations for instructors.Recommendations to increase students’ social supports include:facilitating informal conversations between students and between students and the instructional team, grouping students located in the same time zones in teams, facilitating co-working sessions for students, establishing weekly structure, and utilizing some synchronous components (e.g., virtual office hours). 
    more » « less
  5. Bennet, Michael; Frank, Brian; Vieyra, Rebecca (Ed.)
    Disability is an often-overlooked aspect of diversity. Recent research has indicated that there are barriers to access and participation for disabled students inherent in the design of physics courses. To help counteract these barriers, universities are required to provide reasonable accommodations for disabled students. However, not all students use the accommodations they have access to because of social factors (e.g., disability stigma), and others do not have access to the professional diagnosis often required to access accommodations. The purpose of this study was to explore the experiences of students who identify with a disability/impairment who were taking an emergency remote teaching (ERT) physics course in Fall 2020 to inform policies about providing access to students in future remote and face-to-face courses. In this paper, we present the prevalence and types of impairments disabled students in physics courses reported, their reported accommodation usage, and ethical considerations of this work. Overall, we find that disabled students represent a sizeable group in physics courses, and there are positive and negative reasons students did not use or request accommodations. 
    more » « less