PBWD bases and shuffle algebra realizations for $$U_{\varvec{v}}(L\mathfrak {sl}_n), U_{{\varvec{v}}_1,{\varvec{v}}_2}(L\mathfrak {sl}_n), U_{\varvec{v}}(L\mathfrak {sl}(m|n))$$ and their integral forms
- Award ID(s):
- 2037602
- PAR ID:
- 10327924
- Date Published:
- Journal Name:
- Selecta Mathematica
- Volume:
- 27
- Issue:
- 3
- ISSN:
- 1022-1824
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Let $$K$$ be any field, and let $$n$$ be a positive integer. If we denote by $$\xi _{\textrm{SL}_n}\colon \textrm{SL}_n\times \textrm{SL}_n\to \textrm{SL}_n$$ the commutator morphism over $$K$$, then $$\xi _{\textrm{SL}_n}$$ is flat over the complement of the center of $$\textrm{SL}_n$$.more » « less
-
We develop the rewriting theory for monoidal supercategories and2-supercategories. This extends the theory of higher-dimensional rewriting established for (linear) 2-categories to the super setting, providing a suite of tools for constructing bases and normal forms for2-supercategories given by generators and relations. We then employ this newly developed theory to prove the non-degeneracy conjecture for the odd categorification of quantum\mathfrak{sl}(2)from A. Ellis and A. Lauda [Quantum Topol. 7 (2016), 329–433] and J. Brundan and A. Ellis [Proc. Lond. Math. Soc. (3) 115 (2017), 925–973] As a corollary, this gives a classification of dg-structures on the odd2-category conjectured by A. Lauda and I. Egilmez [Quantum Topol. 11 (2020), 227–294].more » « less
An official website of the United States government

