skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flatness of the Commutator Map Over $\textrm{SL}_n$
Abstract Let $$K$$ be any field, and let $$n$$ be a positive integer. If we denote by $$\xi _{\textrm{SL}_n}\colon \textrm{SL}_n\times \textrm{SL}_n\to \textrm{SL}_n$$ the commutator morphism over $$K$$, then $$\xi _{\textrm{SL}_n}$$ is flat over the complement of the center of $$\textrm{SL}_n$$.  more » « less
Award ID(s):
1702152
PAR ID:
10124263
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For every integer k there exists a bound $$B=B(k)$$ B = B ( k ) such that if the characteristic polynomial of $$g\in \textrm{SL}_n(q)$$ g ∈ SL n ( q ) is the product of $$\le k$$ ≤ k pairwise distinct monic irreducible polynomials over $$\mathbb {F}_q$$ F q , then every element x of $$\textrm{SL}_n(q)$$ SL n ( q ) of support at least B is the product of two conjugates of g . We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions ( p ,  q ), in the special case that $$n=p$$ n = p is prime, if g has order $$\frac{q^p-1}{q-1}$$ q p - 1 q - 1 , then every non-scalar element $$x \in \textrm{SL}_p(q)$$ x ∈ SL p ( q ) is the product of two conjugates of g . The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups. 
    more » « less
  2. Abstract Let $$\Theta _n = (\theta _1, \dots , \theta _n)$$ and $$\Xi _n = (\xi _1, \dots , \xi _n)$$ be two lists of $$n$$ variables, and consider the diagonal action of $${{\mathfrak {S}}}_n$$ on the exterior algebra $$\wedge \{ \Theta _n, \Xi _n \}$$ generated by these variables. Jongwon Kim and the 2nd author defined and studied the fermionic diagonal coinvariant ring$$FDR_n$$ obtained from $$\wedge \{ \Theta _n, \Xi _n \}$$ by modding out by the ideal generated by the $${{\mathfrak {S}}}_n$$-invariants with vanishing constant term. On the other hand, the 2nd author described an action of $${{\mathfrak {S}}}_n$$ on the vector space with basis given by noncrossing set partitions of $$\{1,\dots ,n\}$$ using a novel family of skein relations that resolve crossings in set partitions. We give an isomorphism between a natural Catalan-dimensional submodule of $$FDR_n$$ and the skein representation. To do this, we show that set partition skein relations arise naturally in the context of exterior algebras. Our approach yields an $${{\mathfrak {S}}}_n$$-equivariant way to resolve crossings in set partitions. We use fermions to clarify, sharpen, and extend the theory of set partition crossing resolution. 
    more » « less
  3. Abstract Let $$k$$ be a field, let $$H \subset G$$ be (possibly disconnected) reductive groups over $$k$$, and let $$\Gamma $$ be a finitely generated group. Vinberg and Martin have shown that the induced morphism $$\underline{\operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , H)//H \to \underline{\operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , G)//G$$ is finite. In this note, we generalize this result (with a significantly different proof) by replacing $$k$$ with an arbitrary locally Noetherian scheme, answering a question of Dat. Along the way, we use Bruhat–Tits theory to establish a few apparently new results about integral models of reductive groups over discrete valuation rings. 
    more » « less
  4. Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $$K$$ and $$L$$ be star bodies in $${\mathbb R}^n,$$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $$K$$ and $$L$$, respectively, so that $$\|g\|_\infty =g(0)=1.$$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $$C$$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of $${\mathbb R}^n,$$ and $$d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$$ is the outer volume ratio distance from $$K$$ to the class of generalized $$k$$-intersection bodies in $${\mathbb R}^n.$$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem. 
    more » « less
  5. Abstract Let $$k \leq n$$ be positive integers, and let $$X_n = (x_1, \dots , x_n)$$ be a list of $$n$$ variables. The Boolean product polynomial$$B_{n,k}(X_n)$$ is the product of the linear forms $$\sum _{i \in S} x_i$$, where $$S$$ ranges over all $$k$$-element subsets of $$\{1, 2, \dots , n\}$$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $$B_{n,k}(X_n)$$ for certain $$k$$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $$B_{n,n-1}(X_n)$$ to a bigraded action of the symmetric group $${\mathfrak{S}}_n$$ on a divergence free quotient of superspace. 
    more » « less