Abstract For every integer k there exists a bound $$B=B(k)$$ B = B ( k ) such that if the characteristic polynomial of $$g\in \textrm{SL}_n(q)$$ g ∈ SL n ( q ) is the product of $$\le k$$ ≤ k pairwise distinct monic irreducible polynomials over $$\mathbb {F}_q$$ F q , then every element x of $$\textrm{SL}_n(q)$$ SL n ( q ) of support at least B is the product of two conjugates of g . We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions ( p , q ), in the special case that $$n=p$$ n = p is prime, if g has order $$\frac{q^p-1}{q-1}$$ q p - 1 q - 1 , then every non-scalar element $$x \in \textrm{SL}_p(q)$$ x ∈ SL p ( q ) is the product of two conjugates of g . The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups.
more »
« less
Flatness of the Commutator Map Over $\textrm{SL}_n$
Abstract Let $$K$$ be any field, and let $$n$$ be a positive integer. If we denote by $$\xi _{\textrm{SL}_n}\colon \textrm{SL}_n\times \textrm{SL}_n\to \textrm{SL}_n$$ the commutator morphism over $$K$$, then $$\xi _{\textrm{SL}_n}$$ is flat over the complement of the center of $$\textrm{SL}_n$$.
more »
« less
- Award ID(s):
- 1702152
- PAR ID:
- 10124263
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Let $$\Theta _n = (\theta _1, \dots , \theta _n)$$ and $$\Xi _n = (\xi _1, \dots , \xi _n)$$ be two lists of $$n$$ variables, and consider the diagonal action of $${{\mathfrak {S}}}_n$$ on the exterior algebra $$\wedge \{ \Theta _n, \Xi _n \}$$ generated by these variables. Jongwon Kim and the 2nd author defined and studied the fermionic diagonal coinvariant ring$$FDR_n$$ obtained from $$\wedge \{ \Theta _n, \Xi _n \}$$ by modding out by the ideal generated by the $${{\mathfrak {S}}}_n$$-invariants with vanishing constant term. On the other hand, the 2nd author described an action of $${{\mathfrak {S}}}_n$$ on the vector space with basis given by noncrossing set partitions of $$\{1,\dots ,n\}$$ using a novel family of skein relations that resolve crossings in set partitions. We give an isomorphism between a natural Catalan-dimensional submodule of $$FDR_n$$ and the skein representation. To do this, we show that set partition skein relations arise naturally in the context of exterior algebras. Our approach yields an $${{\mathfrak {S}}}_n$$-equivariant way to resolve crossings in set partitions. We use fermions to clarify, sharpen, and extend the theory of set partition crossing resolution.more » « less
-
Abstract Let $$k$$ be a field, let $$H \subset G$$ be (possibly disconnected) reductive groups over $$k$$, and let $$\Gamma $$ be a finitely generated group. Vinberg and Martin have shown that the induced morphism $$\underline{\operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , H)//H \to \underline{\operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , G)//G$$ is finite. In this note, we generalize this result (with a significantly different proof) by replacing $$k$$ with an arbitrary locally Noetherian scheme, answering a question of Dat. Along the way, we use Bruhat–Tits theory to establish a few apparently new results about integral models of reductive groups over discrete valuation rings.more » « less
-
Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $$K$$ and $$L$$ be star bodies in $${\mathbb R}^n,$$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $$K$$ and $$L$$, respectively, so that $$\|g\|_\infty =g(0)=1.$$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $$C$$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of $${\mathbb R}^n,$$ and $$d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$$ is the outer volume ratio distance from $$K$$ to the class of generalized $$k$$-intersection bodies in $${\mathbb R}^n.$$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem.more » « less
-
Abstract Let $$k \leq n$$ be positive integers, and let $$X_n = (x_1, \dots , x_n)$$ be a list of $$n$$ variables. The Boolean product polynomial$$B_{n,k}(X_n)$$ is the product of the linear forms $$\sum _{i \in S} x_i$$, where $$S$$ ranges over all $$k$$-element subsets of $$\{1, 2, \dots , n\}$$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $$B_{n,k}(X_n)$$ for certain $$k$$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $$B_{n,n-1}(X_n)$$ to a bigraded action of the symmetric group $${\mathfrak{S}}_n$$ on a divergence free quotient of superspace.more » « less
An official website of the United States government
