skip to main content

This content will become publicly available on April 1, 2023

Title: Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b
Abstract We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
2011334 1912599
Publication Date:
NSF-PAR ID:
10327947
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
2
Page Range or eLocation-ID:
186
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systemsmore »of compact objects, that is binary neutron star, neutron star–black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of $$10^{5}, 10^{6}, 10^{7}\mathrm {\ Mpc}^3$$ 10 5 , 10 6 , 10 7 Mpc 3 for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of $$1^{+12}_{-1}$$ 1 - 1 + 12 ( $$10^{+52}_{-10}$$ 10 - 10 + 52 ) for binary neutron star mergers, of $$0^{+19}_{-0}$$ 0 - 0 + 19 ( $$1^{+91}_{-1}$$ 1 - 1 + 91 ) for neutron star–black hole mergers, and $$17^{+22}_{-11}$$ 17 - 11 + 22 ( $$79^{+89}_{-44}$$ 79 - 44 + 89 ) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.« less
  2. We have conducted the most sensitive low frequency (below 100 MHz) search to date for prompt, low-frequency radio emission associated with short-duration gamma-ray bursts (GRBs), using the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA). The OVRO-LWA's nearly full-hemisphere field-of-view (∼20,000 square degrees) allows us to search for low-frequency (sub-100 MHz) counterparts for a large sample of the subset of GRB events for which prompt radio emission has been predicted. Following the detection of short GRB 170112A by Swift, we used all-sky OVRO-LWA images spanning one hour prior to and two hours following the GRB event to search for amore »transient source coincident with the position of GRB 170112A. We detect no transient source, with our most constraining 1σ flux density limit of 650 mJy for frequencies spanning 27 MHz−84 MHz. We place constraints on a number of models predicting prompt, low-frequency radio emission accompanying short GRBs and their potential binary neutron star merger progenitors, and place an upper limit of Lradio/Lγ≲7×10−16 on the fraction of energy released in the prompt radio emission. These observations serve as a pilot effort for a program targeting a wider sample of both short and long GRBs with the OVRO-LWA, including bursts with confirmed redshift measurements which are critical to placing the most constraining limits on prompt radio emission models, as well as a program for the follow-up of gravitational wave compact binary coalescence events detected by advanced LIGO and Virgo.« less
  3. Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5   M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150  M ⊙ providing direct evidencemore »of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200  M ⊙ and effective aligned spin 0.8 at 0.056 Gpc −3 yr −1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc −3 yr −1 .« less
  4. ABSTRACT

    GW170817 showed that neutron star mergers not only emit gravitational waves but also can release electromagnetic signatures in multiple wavelengths. Within the first half of the third observing run of the Advanced LIGO and Virgo detectors, there have been a number of gravitational wave candidates of compact binary systems for which at least one component is potentially a neutron star. In this article, we look at the candidates S190425z, S190426c, S190510g, S190901ap, and S190910h, predicted to have potentially a non-zero remnant mass, in more detail. All these triggers have been followed up with extensive campaigns by the astronomical communitymore »doing electromagnetic searches for their optical counterparts; however, according to the released classification, there is a high probability that some of these events might not be of extraterrestrial origin. Assuming that the triggers are caused by a compact binary coalescence and that the individual source locations have been covered during the EM follow-up campaigns, we employ three different kilonova models and apply them to derive possible constraints on the matter ejection consistent with the publicly available gravitational-wave trigger information and the lack of a kilonova detection. These upper bounds on the ejecta mass can be related to limits on the maximum mass of the binary neutron star candidate S190425z and to constraints on the mass-ratio, spin, and NS compactness for the potential black hole–neutron star candidate S190426c. Our results show that deeper electromagnetic observations for future gravitational wave events near the horizon limit of the advanced detectors are essential.

    « less
  5. null (Ed.)
    ABSTRACT Searches for gravitational-wave counterparts have been going in earnest since GW170817 and the discovery of AT2017gfo. Since then, the lack of detection of other optical counterparts connected to binary neutron star or black hole–neutron star candidates has highlighted the need for a better discrimination criterion to support this effort. At the moment, low-latency gravitational-wave alerts contain preliminary information about binary properties and hence whether a detected binary might have an electromagnetic counterpart. The current alert method is a classifier that estimates the probability that there is a debris disc outside the black hole created during the merger as wellmore »as the probability of a signal being a binary neutron star, a black hole–neutron star, a binary black hole, or of terrestrial origin. In this work, we expand upon this approach to both predict the ejecta properties and provide contours of potential light curves for these events, in order to improve the follow-up observation strategy. The various sources of uncertainty are discussed, and we conclude that our ignorance about the ejecta composition and the insufficient constraint of the binary parameters by low-latency pipelines represent the main limitations. To validate the method, we test our approach on real events from the second and third Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)–Virgo observing runs.« less