skip to main content


Title: Intensification of Tilted Tropical Cyclones over Relatively Cool and Warm Oceans in Idealized Numerical Simulations
Abstract

A cloud-resolving model is used to examine the intensification of tilted tropical cyclones from depression to hurricane strength over relatively cool and warm oceans under idealized conditions where environmental vertical wind shear has become minimal. Variation of the SST does not substantially change the time-averaged relationship between tilt and the radial length scale of the inner core, or between tilt and the azimuthal distribution of precipitation during the hurricane formation period (HFP). By contrast, for systems having similar structural parameters, the HFP lengthens superlinearly in association with a decline of the precipitation rate as the SST decreases from 30° to 26°C. In many simulations, hurricane formation progresses from a phase of slow or neutral intensification to fast spinup. The transition to fast spinup occurs after the magnitudes of tilt and convective asymmetry drop below certain SST-dependent levels following an alignment process explained in an earlier paper. For reasons examined herein, the alignment coincides with enhancements of lower–middle-tropospheric relative humidity and lower-tropospheric CAPE inward of the radius of maximum surface wind speedrm. Such moist-thermodynamic modifications appear to facilitate initiation of the faster mode of intensification, which involves contraction ofrmand the characteristic radius of deep convection. The mean transitional values of the tilt magnitude and lower–middle-tropospheric relative humidity for SSTs of 28°–30°C are respectively higher and lower than their counterparts at 26°C. Greater magnitudes of the surface enthalpy flux and core deep-layer CAPE found at the higher SSTs plausibly compensate for less complete alignment and core humidification at the transition time.

 
more » « less
Award ID(s):
1743854
NSF-PAR ID:
10363100
Author(s) / Creator(s):
 
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
79
Issue:
2
ISSN:
0022-4928
Page Range / eLocation ID:
p. 485-512
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study uses a recently developed airborne Doppler radar database to explore how vortex misalignment is related to tropical cyclone (TC) precipitation structure and intensity change. It is found that for relatively weak TCs, defined here as storms with a peak 10-m wind of 65 kt (1 kt = 0.51 m s−1) or less, the magnitude of vortex tilt is closely linked to the rate of subsequent TC intensity change, especially over the next 12–36 h. In strong TCs, defined as storms with a peak 10-m wind greater than 65 kt, vortex tilt magnitude is only weakly correlated with TC intensity change. Based on these findings, this study focuses on how vortex tilt is related to TC precipitation structure and intensity change in weak TCs. To illustrate how the TC precipitation structure is related to the magnitude of vortex misalignment, weak TCs are divided into two groups: small-tilt and large-tilt TCs. In large-tilt TCs, storms display a relatively large radius of maximum wind, the precipitation structure is asymmetric, and convection occurs more frequently near the midtropospheric TC center than the lower-tropospheric TC center. Alternatively, small-tilt TCs exhibit a greater areal coverage of precipitation inward of a relatively small radius of maximum wind. Greater rates of TC intensification, including rapid intensification, are shown to occur preferentially for TCs with greater vertical alignment and storms in relatively favorable environments.

    Significance Statement

    Accurately predicting tropical cyclone (TC) intensity change is challenging. This is particularly true for storms that undergo rapid intensity changes. Recent numerical modeling studies have suggested that vortex vertical alignment commonly precedes the onset of rapid intensification; however, this consensus is not unanimous. Until now, there has not been a systematic observational analysis of the relationship between vortex misalignment and TC intensity change. This study addresses this gap using a recently developed airborne radar database. We show that the degree of vortex misalignment is a useful predictor for TC intensity change, but primarily for weak storms. In these cases, more aligned TCs exhibit precipitation patterns that favor greater intensification rates. Future work should explore the causes of changes in vortex alignment.

     
    more » « less
  2. Abstract

    A cloud-resolving model is used to examine the virtually shear-free evolution of incipient tropical cyclones initialized with different degrees of misalignment between the lower- and middle-tropospheric centers of rotation. Increasing the initial displacement of rotational centers (the tilt) from a negligible value to several hundred kilometers extends the time scale of hurricane formation from 1 to 10 days. Hindered amplification of the maximum tangential velocity υm at the surface of a strongly perturbed system is related to an extended duration of misalignment resulting from incomplete early decay and subsequent transient growth of the tilt magnitude. The prolonged misalignment coincides with a prolonged period of asymmetric convection peaked far from the surface center of the vortex. A Sawyer–Eliassen model is used to analyze the disparity between azimuthal velocity tendencies of selected pre–tropical storm vortices with low and high degrees of misalignment. Although no single factor completely explains the difference of intensification rates, greater misalignment is linked to weaker positive azimuthal velocity forcing near υm by the component of the mean secondary circulation attributed to heating by microphysical cloud processes. Of note regarding the dynamics, enhanced tilt only modestly affects the growth rate of kinetic energy outside the core of the surface vortex while severely hindering intensification of υm within the core for at least several days. The processes controlling the evolution of the misalignment associated with inefficient development are examined in detail for a selected simulation. It is found that adiabatic mechanisms are capable of driving the transient amplification of tilt, whereas diabatic processes are essential to ultimate alignment of the tropical cyclone.

     
    more » « less
  3. Abstract

    Tropical cyclones are commonly observed to have appreciable vertical misalignments prior to becoming full-strength hurricanes. The vertical misalignment (tilt) of a tropical cyclone is generally coupled to a pronounced asymmetry of inner-core convection, with the strongest convection tending to concentrate downtilt of the surface vortex center. Neither the mechanisms by which tilted tropical cyclones intensify nor the time scales over which such mechanisms operate are fully understood. The present study offers some insight into the asymmetric intensification process by examining the responses of tilted tropical cyclone–like vortices to downtilt diabatic forcing (heating) in a 3D nonhydrostatic numerical model. The magnitude of the heating is adjusted so as to vary the strength of the downtilt convection that it generates. A fairly consistent picture of intensification is found in various simulation groups that differ in their initial vortex configurations, environmental shear flows, and specific positionings of downtilt heating. The intensification mechanism generally depends on whether the low-level convergence σb produced in the vicinity of the downtilt heat source exceeds a critical value dependent on the local velocity of the low-level nondivergent background flow in a reference frame that drifts with the heat source. Supercritical σb causes fast spinup initiated by downtilt core replacement. Subcritical σb causes a slower intensification process. As measured herein, the supercritical intensification rate is approximately proportional to σb. The subcritical intensification rate has a more subtle scaling, and expectedly becomes negative when σb drops below a threshold for frictional spindown to dominate. The relevance of the foregoing results to real-world tropical cyclones is discussed.

     
    more » « less
  4. Abstract

    The northeastern Pacific climate system features an extensive low-cloud deck off California on the southeastern flank of the subtropical high that accompanies intense northeasterly trades and relatively low sea surface temperatures (SSTs). This study assesses climatological impacts of the low-cloud deck and their seasonal differences by regionally turning on and off the low-cloud radiative effect in a fully coupled atmosphere–ocean model. The simulations demonstrate that the cloud radiative effect causes a local SST decrease of up to 3°C on an annual average with the response extending southwestward with intensified trade winds, indicative of the wind–evaporation–SST (WES) feedback. This nonlocal wind response is strong in summer, when the SST decrease peaks due to increased shortwave cooling, and persists into autumn. In these seasons when the background SST is high, the lowered SST suppresses deep-convective precipitation that would otherwise occur in the absence of the low-cloud deck. The resultant anomalous diabatic cooling induces a surface anticyclonic response with the intensified trades that promote the WES feedback. Such seasonal enhancement of the atmospheric response does not occur without air–sea couplings. The enhanced trades accompany intensified upper-tropospheric westerlies, strengthening the vertical wind shear that, together with the lowered SST, acts to shield Hawaii from powerful hurricanes. On the basin scale, the anticyclonic surface wind response accelerates the North Pacific subtropical ocean gyre to speed up the Kuroshio by as much as 30%. SST thereby increases along the Kuroshio and its extension, intensifying upward turbulent heat fluxes from the ocean to increase precipitation.

     
    more » « less
  5. Abstract

    Contributions of atmospheric factors to the variability of the calculated theoretical maximum potential intensity (MPI) of tropical cyclones (TCs) over the North Atlantic are explored using the 6‐hourly atmospheric reanalysis and TC best track data from 1980 to 2015. The results show that for a given sea surface temperature (SST), the calculated theoretical MPI between the medians of top 10% and bottom 10% samples can vary by as large as 10–15 m/s, which accounts for 20–25% of the median of the MPI. It is shown that the drier (moister) and colder (warmer) environment favors higher (lower) MPI, and the TC‐MPI is more sensitive to atmospheric temperature at lower SSTs but more sensitive to atmospheric humidity at higher SSTs. Results from sensitivity experiments show that the tropospheric temperature and humidity profiles and the outflow layer temperature are all responsible for the MPI variability, but their relative importance vary with SST. The atmospheric humidity accounts for 12–13 (7–11) m/s at SSTs over (below) 28 °C, the tropospheric temperature accounts for about 7–12 (5–6) m/s at SSTs below (above) 28 °C, and the outflow temperature accounts for 7–8 m/s almost independent of SST. These results strongly suggest that the modulation of MPI by synoptic variability needs to be considered when MPI is calculated and used as a predictor/parameter in operational TC intensity prediction schemes, especially for strong TCs. Some other implications of the results are also discussed.

     
    more » « less