skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Global monsoon systems and their modulation by the equatorial Quasi-Biennial Oscillation

Monthly-mean data of ERA-Interim reanalysis, precipitation, outgoing longwave radiation (OLR) and sea surface temperature(SST) are investigated for 40 years (1979-2018) to reveal the modulation of the global monsoon systems by the equatorial quasi-biennial oscillation (QBO), focusing only on the neutral El Niño-Southern Oscillation (ENSO) periods (in total 374 months). First, the climatology of the global monsoon systems is viewed with longitude-latitude plots of the precipitation, its proxies and lower tropospheric circulations for the annual mean and two solstice seasons, together with the composite differences between the two seasons. In addition to seasonal variations of Intertropical Convergence Zones (ITCZs), several regional monsoon systems are well identified with an anti-phase of the annual cycle between the two hemispheres. Precipitation-related quantities (OLR and specific humidity), surface conditions [i.e., mean sea level pressure (MSLP) and SST] and circulation fields related to moist convection systems show fundamental features of the global monsoon systems. After introducing eight QBO phases based on the leading two principal components of the zonal-mean zonal wind variations in the equatorial lower-stratosphere, the statistical significance of the composite difference in the precipitation and tropospheric circulation is evaluated for the opposite QBO phases. The composite differences show significant modulations in some regional monsoon systems, dominated by zonally asymmetric components, with the largest magnitudes for specific QBO-phases corresponding to traditional indices of the equatorial zonal-mean zonal wind at 20 and 50 hPa. Along the equator, significant QBO influence is characterized by the modulation of the Walker circulation over the western Pacific. In middle latitudes during boreal summer, for a specific QBO-phase, statistically significant modulation of low-pressure cyclonic perturbation is obtained over the Northern-Hemisphere western Pacific Ocean associated with statistically significant features of heavier precipitation over the eastern side of the cyclonic perturbation and the opposite lighter precipitation over the western side. During boreal winter, similar significant low-pressure cyclonic perturbations were found over the Northern-Hemisphere eastern Pacific and Atlantic Oceans for specific phases.

 
more » « less
Award ID(s):
1947658
NSF-PAR ID:
10498540
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
India Meteorological Department
Date Published:
Journal Name:
MAUSAM
Volume:
74
Issue:
2
ISSN:
0252-9416
Page Range / eLocation ID:
239 to 252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 data, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-yr composite analysis are used to understand the effect of the quasi-biweekly oscillation (QBWO) on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches maximum amplitude on the western side of the Philippines on days with average to above-average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO. Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local-scale environmental background state similarly.

     
    more » « less
  2. Abstract

    Variability in the position and strength of the subtropical jet (STJ) and polar front jet (PFJ) streams has important implications for global and regional climate. Previous studies have related the position and strength of the STJ to tropical thermodynamic processes, whereas the position and strength of the PFJ are more associated with midlatitude eddies. These conclusions have largely resulted from studies using idealized models. In this study, ERA‐Interim reanalysis and CMIP6 global climate models are used to examine month‐to‐month and interannual variability of the wintertime Northern Hemisphere (NH) STJ and PFJ. This study particularly focuses on the regional characteristics of the jet variability, extending previous studies on zonal‐mean jet streams. Consistent with idealized modeling studies, a close relationship is found between tropical outgoing longwave radiation (OLR) and the STJ and between midlatitude lower tropospheric temperature gradients and the PFJ. Variations of both jets are also linked to well‐known teleconnection patterns. Variations in tropical convection over the Pacific Ocean are associated with variations of the NH STJ at most longitudes, with different phases of the El Niño–Southern Oscillation (ENSO) associated with the shift and strengthening of the STJ in different regions. CMIP6 models generally capture these relationships, but the models’ tropical convection is often displaced westward when compared to observations, reflecting a climatological bias in OLR in the western tropical Pacific Ocean in many models. The displaced tropical convection in models excites different paths of Rossby wave propagation, resulting in different ENSO teleconnections on the STJ over North America and Europe.

     
    more » « less
  3. Abstract

    Indian Ocean sea surface temperatures impact precipitation across the basin through coupled ocean‐atmosphere responses to changes in climate. To understand the hydroclimate response over the western Indian Ocean and equatorial east Africa to different forcing mechanisms, we present four new proxy reconstructions from core VM19‐193 (2.98°N, 51.47°E) that span the last 250 ky. Sub‐surface water temperatures (Sub‐T; TEX86) show strong precessional (23 ky) variability that is primarily influenced by maximum incoming solar radiation (insolation) during the Northern Hemisphere spring season, likely indicating that local insolation dominates the upper water column at this tropical location over time. Leaf waxes, on the other hand, reflect two different precipitation signals:δ13Cwax(in phase with boreal fall insolation) is likely reflecting vegetation changes in response to local rainfall over east Africa, whereasδDprecip(primarily driven by boreal summer insolation) represents changes in regional circulation associated with the summer monsoon. Glacial‐interglacial changes in ocean temperatures support glacial shelf exposure over the Maritime Continent in the eastern Indian Ocean and the subsequent weakening of the Indian Walker Circulation as a mechanism driving 100 ky climate variability across the tropical Indo‐Pacific. Additionally, the 100 ky spectral power inδDprecipsupports a basin‐wide weakening of summer monsoon circulation in response to glacial climates. Overall, the proxy records from VM19‐193 indicate that both precession and glacial‐interglacial cycles exert control over hydroclimate at this tropical location.

     
    more » « less
  4. Abstract

    The joint influence of the stratospheric quasi‐biennial oscillation (QBO) and the El Niño Southern Oscillation (ENSO) on the polar vortex, subtropical westerly jets (STJs), and wave patterns during boreal winter is investigated in 40 years (1979–2018) of monthly mean ERA‐Interim reanalyses. The method of Wallace et al. (1993),https://doi.org/10.1175/15200469(1993)050<1751:ROTESQ>2.0.CO;2is used to conduct a QBO phase angle sweep. QBO westerly (W) and easterly (E) composites are then segregated by the phase of ENSO. Two pathways are described by which the QBO mean meridional circulation (MMC) influences the northern winter hemisphere. The “stratospheric pathway” modulates stratospheric planetary wave absorption via the Holton‐Tan mechanism. The “tropospheric pathway” modulates the tropical and subtropical upper troposphere and lower stratosphere. QBO MMC anomalies exhibit a checkerboard pattern in temperature and arched structures in zonal wind which extend into midlatitudes, and are stronger on the winter side. During QBO W, the polar vortex and STJs are enhanced. QBO signals in the polar vortex are amplified during La Niña. During El Niño and QBO W, the strongest STJs occur, and a warm pole/wave two pattern is found. During El Niño and QBO E, a trough is found over Eurasia and a ridge over the North Atlantic, in a wave one pattern. El Niño diminishes QBO anomalies in the tropical stratosphere and reduces the poleward extent and amplitude of the QBO MMC, thereby influencing the stratospheric pathway. Effects on the boreal winter hemisphere are attributed to the combined influence of the QBO and ENSO via both pathways.

     
    more » « less
  5. The tropical Madden–Julian oscillation (MJO) excites a northward propagating Rossby wave train that largely determines the extratropical surface weather consequences of the MJO. Previous work has demonstrated a significant influence of the tropospheric El Niño–Southern Oscillation (ENSO) on the characteristics of this wave train. Here, composite analyses of ERA-Interim sea level pressure (SLP) and surface air temperature (SAT) data during the extended northern winter season are performed to investigate the additional role of stratospheric forcings [the quasi-biennial oscillation (QBO) and the 11-yr solar cycle] in modifying the wave train and its consequences. MJO phase composites of 20–100-day filtered data for the two QBO phases show that, similar to the cool phase of ENSO, the easterly phase of the QBO (QBOE) produces a stronger wave train and associated modulation of SLP and SAT anomalies. In particular, during MJO phases 5–7, positive SLP and negative SAT anomalies in the North Atlantic/Eurasian sector are enhanced during QBOE relative to the westerly phase of the QBO (QBOW). The opposite occurs during the earliest MJO phases. SAT anomalies over eastern North America are also more strongly modulated during QBOE. Although less certain because of the short data record, there is some evidence that the minimum phase of the solar cycle (SMIN) produces a similar increased modulation of SLP and SAT anomalies. The strongest modulations of SLP and SAT anomalies are produced when two or more of the forcings are superposed (e.g., QBOE/cool ENSO, SMIN/QBOE, etc.). 
    more » « less