skip to main content


Title: Atypical tuning and amplification mechanisms in gecko auditory hair cells
The auditory papilla of geckos contains two zones of sensory hair cells, one covered by a continuous tectorial membrane affixed to the hair bundles and the other by discrete tectorial sallets each surmounting a transverse row of bundles. Gecko papillae are thought to encode sound frequencies up to 5 kHz, but little is known about the hair cell electrical properties or their role in frequency tuning. We recorded from hair cells in the isolated auditory papilla of the crested gecko, Correlophus ciliatus , and found that in both the nonsalletal region and part of the salletal region, the cells displayed electrical tuning organized tonotopically. Along the salletal zone, occupying the apical two-thirds of the papilla, hair bundle length decreased threefold and stereociliary complement increased 1.5-fold. The two morphological variations predict a 13-fold gradient in bundle stiffness, confirmed experimentally, which, when coupled with salletal mass, could provide passive mechanical resonances from 1 to 6 kHz. Sinusoidal electrical currents injected across the papilla evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations across the papilla. Evoked bundle oscillations were diminished by reducing Ca 2+ influx, but not by blocking the mechanotransduction channels or inhibiting prestin action, thereby distinguishing them from known electromechanical mechanisms in hair cells. We suggest the phenomenon may be a manifestation of an electromechanical amplification that augments the passive mechanical tuning of the sallets over the high-frequency region.  more » « less
Award ID(s):
1657662
NSF-PAR ID:
10328012
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
12
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    According to the National Institute of Deafness and other Communication Disorders 2012 report, the number of cochlear implant (CI) users is steadily increasing from 324,000 CI users worldwide. The cochlea, located in the inner ear, is a snail-like structure that exhibits a tonotopic geometry where acoustic waves are filtered spatially according to frequency. Throughout the cochlea, there exist hair cells that transduce sensed acoustic waves into an electrical signal that is carried by the auditory nerve to ultimately reach the auditory cortex of the brain. A cochlear implant bridges the gap if non-functional hair cells are present. Conventional CIs directly inject an electrical current into surrounding tissue via an implanted electrode array and exploit the frequency-to-place mapping of the cochlea. However, the current is dispersed in perilymph, a conductive bodily fluid within the cochlea, causing a spread of excitation. Magnetic fields are more impervious to the effects of the cochlear environment due to the material properties of perilymph and surrounding tissue, demonstrating potential to improve precision. As an alternative to conventional CI electrodes, the development and miniaturization of microcoils intended for micromagnetic stimulation of intracochlear neural elements is described. As a step toward realizing a microcoil array sized for cochlear implantation, human-sized coils were prototyped via aerosol jet printing. The batch reproducible aerosol jet printed microcoils have a diameter of 1800 μm, trace width and trace spacing of 112.5 μm, 12 μm thickness, and inductance values of approximately 15.5 nH. Modelling results indicate that the coils have a combined depolarization–hyperpolarization region that spans 1.5 mm and produce a more restrictive spread of activation when compared with conventional CI. 
    more » « less
  2. null (Ed.)
    Abstract Insect epithelial cells contain cellular extensions such as bristles, hairs, and scales. These cellular extensions are homologous structures that differ in morphology and function. They contain actin bundles that dictate their cellular morphology. While the organization, function, and identity of the major actin-bundling proteins in bristles and hairs are known, this information on scales is unknown. In this study, we characterized the development of scales and the role of actin bundles in the mosquito, Aedes aegypti . We show that scales undergo drastic morphological changes during development, from a cylindrical to flat shape with longer membrane invagination. Scale actin-bundle distribution changes from the symmetrical organization of actin bundles located throughout the bristle membrane to an asymmetrical organization. By chemically inhibiting actin polymerization and by knocking out the forked gene in the mosquito ( Ae-Forked ; a known actin-bundling protein) by CRISPR-Cas9 gene editing, we showed that actin bundles are required for shaping bristle, hair, and scale morphology. We demonstrated that actin bundles and Ae-Forked are required for bristle elongation, but not for that of scales. In scales, actin bundles are required for width formation. In summary, our results reveal, for the first time, the developmental process of mosquito scale formation and also the role of actin bundles and actin-bundle proteins in scale morphogenesis. Moreover, our results reveal that although scale and bristle are thought to be homologous structures, actin bundles have a differential requirement in shaping mosquito scales compared to bristles. 
    more » « less
  3. The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize “singing” males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms −2 ) that are 7–10 dB lower than nonreproductive females across a broad range of frequencies, which include the dominant harmonics of male advertisement calls. This enhanced auditory sensitivity of the utricle likely plays an essential role in facilitating midshipman social and reproductive acoustic communication. NEW & NOTEWORTHY In many animals, vocal-acoustic communication is fundamental for facilitating social behaviors. For the vocal plainfin midshipman fish, the detection and localization of social acoustic signals are critical to the species’ reproductive success. Here, we show that the utricle, an inner ear end organ often thought to primarily serve a vestibular function, serves an auditory function that is seasonally plastic and modulated by the animal’s reproductive state effectively enhancing auditory sensitivity to courting male advertisement calls. 
    more » « less
  4. Abstract

    We combined magnetoencephalography (MEG), 7 T proton magnetic resonance spectroscopy (MRS), and 7 T fMRI during performance of a task in a group of 23 first episode psychosis (FEP) patients and 26 matched healthy controls (HC). We recorded both the auditory evoked response to 40 Hz tone clicks and the resting state in MEG. Neurometabolite levels were obtained from the anterior cingulate cortex (ACC). The fMRI BOLD response was obtained during the Stroop inhibitory control task. FEP showed a significant increase in resting state low frequency theta activity (p < 0.05; Cohend= 0.69), but no significant difference in the 40 Hz auditory evoked response compared to HC. An across-groups whole brain analysis of the fMRI BOLD response identified eight regions that were significantly activated during task performance (p < 0.01, FDR-corrected); the mean signal extracted from those regions was significantly different between the groups (p = 0.0006;d = 1.19). In the combined FEP and HC group, there was a significant correlation between the BOLD signal during task performance and MEG resting state low frequency activity (p < 0.05). In FEP, we report significant alteration in resting state low frequency MEG activity, but no alterations in auditory evoked gamma band response, suggesting that the former is a more robust biomarker of early psychosis. There were no correlations between gamma oscillations and GABA levels in either HC or FEP. Finally, in this study, each of the three imaging modalities differentiated FEP from HC; fMRI with good and MEG and MRS with moderate effect size.

     
    more » « less
  5. Abstract  
    more » « less