skip to main content


Title: Going beyond the borders: pyrrolo[3,2- b ]pyrroles with deep red emission
A two-step route to strongly absorbing and efficiently orange to deep red fluorescent, doubly B/N-doped, ladder-type pyrrolo[3,2- b ]pyrroles has been developed. We synthesize and study a series of derivatives of these four-coordinate boron-containing, nominally quadrupolar materials, which mostly exhibit one-photon absorption in the 500–600 nm range with the peak molar extinction coefficients reaching 150 000, and emission in the 520–670 nm range with the fluorescence quantum yields reaching 0.90. Within the family of these ultrastable dyes even small structural changes lead to significant variations of the photophysical properties, in some cases attributed to reversal of energy ordering of alternate-parity excited electronic states. Effective preservation of ground-state inversion symmetry was evidenced by very weak two-photon absorption (2PA) at excitation wavelengths corresponding to the lowest-energy, strongly one-photon allowed purely electronic transition. π-Expanded derivatives and those possessing electron-donating groups showed the most red-shifted absorption- and emission spectra, while displaying remarkably high peak 2PA cross-section ( σ 2PA ) values reaching ∼2400 GM at around 760 nm, corresponding to a two-photon allowed higher-energy excited state. At the same time, derivatives lacking π-expansion were found to have a relatively weak 2PA peak centered at ca. 800–900 nm with the maximum σ 2PA ∼50–250 GM. Our findings are augmented by theoretical calculations performed using TD-DFT method, which reproduce the main experimental trends, including the 2PA, in a nearly quantitative manner. Electrochemical studies revealed that the HOMO of the new dyes is located at ca . −5.35 eV making them relatively electron rich in spite of the presence of two B − –N + dative bonds. These dyes undergo a fully reversible first oxidation, located on the diphenylpyrrolo[3,2- b ]pyrrole core, directly to the di(radical cation) stage.  more » « less
Award ID(s):
2103628
NSF-PAR ID:
10328059
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
48
ISSN:
2041-6520
Page Range / eLocation ID:
15935 to 15946
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two heteroleptic monocationic Ir( iii ) complexes bearing 6,6′-bis(7-benzothiazolylfluoren-2-yl)-2,2′-biquinoline as the diimine ligand with different degrees of π-conjugation were synthesized and their photophysics was investigated by spectroscopic techniques and first principles calculations. These complexes possessed two intense absorption bands at 300–380 nm and 380–520 nm in toluene that are predominantly ascribed to the diimine ligand-localized 1 π,π* transition and intraligand charge transfer ( 1 ILCT)/ 1 π,π* transitions, respectively, with the latter being mixed with minor 1 MLCT (metal-to-ligand charge transfer)/ 1 LLCT (ligand-to-ligand charge transfer) configurations. Both complexes also exhibited a spin-forbidden, very weak 3 MLCT/ 3 LLCT/ 3 π,π* absorption band at 520–650 nm. The emission of these complexes appeared in the red spectral region ( λ em : 640 nm for Ir-1 and 648 nm for Ir-2 in toluene) with a quantum yield of <10% and a lifetime of hundreds of ns, which emanated from the 3 ILCT/ 3 π,π* state. The 3 ILCT/ 3 π,π* state also gave rise to broad and moderately strong transient absorption (TA) at ca. 480–800 nm. Extending the π-conjugation of the diimine ligand via inserting CC triplet bonds between the 7-benzothiazolylfluoren-2-yl substituents and 2,2′-biquinoline slightly red-shifted the absorption bands, the emission bands, and the TA bands in Ir-2 compared to those in Ir-1 that lacks the connecting CC triplet bonds in the diimine ligand. The stronger excited-state absorption with respect to the ground-state absorption at 532 nm led to strong reverse saturable absorption (RSA) for ns laser pulses at this wavelength, with the RSA of Ir-2 being slightly stronger than that of Ir-1, which correlated well with their ratios of the excited-state to ground-state absorption cross sections ( σ ex / σ 0 ). These results suggest that extending the π-conjugation of the 2,2′-biquinoline ligand via incorporating the 7-benzothiazolylfluoren-2-yl substituents retained the broad but weak ground-state absorption at 500–650 nm, meanwhile increased the triplet excited-state lifetimes, which resulted in the much stronger triplet excited-state absorption in this spectral region and strong RSA at 532 nm. Thus, these complexes are promising candidates as broadband reverse saturable absorbers. 
    more » « less
  2. Abstract

    We present a study of two-photon pathways for the transfer of NaCs molecules to their rovibrational ground state. Starting from NaCs Feshbach molecules, we perform bound-bound excited state spectroscopy in the wavelength range from 900 nm to 940 nm, covering more than 30 vibrational states of thec3Σ+,b3Π, andB1Πelectronic states. Analyzing the rotational substructure, we identify the highly mixedc3Σ1+|v=22b3Π1|v=54state as an efficient bridge for stimulated Raman adiabatic passage. We demonstrate transfer into the NaCs ground state with an efficiency of up to 88(4)%. Highly efficient transfer is critical for the realization of many-body quantum phases of strongly dipolar NaCs molecules and high fidelity detection of single molecules, for example, in spin physics experiments in optical lattices and quantum information experiments in optical tweezer arrays.

     
    more » « less
  3. Conjugated polymers composed of tricoordinate boron and π-conjugated units possess extended conjugation with relatively low-lying LUMOs arising from p B –π interactions. However, donor–acceptor (D–A) polymers that feature triorganoboranes alternating with highly electron-rich donors remain scarce. We present here a new class of hybrid D–A polymers that combine electron-rich dithienosiloles or dithienogermoles with highly robust tricoordinate borane acceptors. Polymers of modest to high molecular weight are readily prepared by Pd-catalyzed Stille coupling reaction of bis(halothienyl)boranes and distannyldithienosiloles or -germoles. The polymers are obtained as dark red solids that are stable in air and soluble in common organic solvents. Long wavelength UV-vis absorptions at ca. 500–550 nm indicate effective π-conjugation and pronounced D–A interactions along the backbone. The emission maxima occur at wavelengths longer than 600 nm in solution and experience further shifts to lower energy with increasing solvent polarity, indicative of strong intramolecular charge transfer (ICT) character of the excited state. The powerful acceptor character of the borane comonomer units in the polymer structures is also evident from cyclic voltammetry (CV) analyses that reveal relatively low-lying LUMO levels of the polymers, enhancing the D–A interaction. Density functional theory (DFT) calculations on model oligomers further support these experimental observations. 
    more » « less
  4. This paper presents an extensive parameter study of a non-intrusive and non-seeded laser diagnostic method for measuring one dimensional (1D) rotational temperature of molecular nitrogen (N2) at 165 - 450 K. Compared to previous efforts using molecular oxygen, here resonantly ionized and photoelectron induced fluorescence of molecular nitrogen for thermometry (N2RIPT) was demonstrated. The RIPT signal is generated by directly probing various rotational levels within the rovibrational absorption band of N2, corresponding to the 3-photon transition of N2(X1Σg+,v=0→b1Πu,v=6) near 285 nm, without involving collisional effects of molecular oxygen and nitrogen. The photoionized N2produces strong first negative band of N2+(B2Σu+X2Σg+) near 390 nm, 420 nm, and 425 nm. Boltzmann analyses of various discrete fluorescence emission lines yield rotational temperatures of molecular nitrogen. By empirically choosing multiple rotational levels within the absorption band, non-scanning thermometry can be accurately achieved for molecular nitrogen. It is demonstrated that the N2RIPT technique can measure 1D temperature profile up to ∼5 cm in length within a pure N2environment. Multiple wavelengths are thoroughly analyzed and listed that are accurate for RIPT for various temperature ranges.

     
    more » « less
  5. Abstract

    Electron-deficient π-conjugated functional dyes lie at the heart of organic optoelectronics. Adding nitro groups to aromatic compounds usually quenches their fluorescence via inter-system crossing (ISC) or internal conversion (IC). While strong electronic coupling of the nitro groups with the dyes ensures the benefits from these electron-withdrawing substituents, it also leads to fluorescence quenching. Here, we demonstrate how such electronic coupling affects the photophysics of acceptor–donor–acceptor fluorescent dyes, with nitrophenyl acceptors and a pyrrolo[3,2-b]pyrrole donor. The position of the nitro groups and the donor-acceptor distance strongly affect the fluorescence properties of thebis-nitrotetraphenylpyrrolopyrroles. Concurrently, increasing solvent polarity quenches the emission that recovers upon solidifying the media. Intramolecular charge transfer (CT) and molecular dynamics, therefore, govern the fluorescence of these nitro-aromatics. While balanced donor-acceptor coupling ensures fast radiative deactivation and slow ISC essential for large fluorescence quantum yields, vibronic borrowing accounts for medium dependent IC via back CT. These mechanistic paradigms set important design principles for molecular photonics and electronics.

     
    more » « less