Bioinformatics sequence data mining can reveal hidden microbial symbionts that might normally be filtered and removed as contaminants. Data mining can be helpful to detect Wolbachia, a widespread bacterial endosymbiont in insects and filarial nematodes whose distribution in plant-parasitic nematodes (PPNs) remains underexplored. To date, Wolbachia has only been reported a few PPNs, yet nematode-infecting Wolbachia may have been widespread in the evolutionary history of the phylum based on evidence of horizontal gene transfers, suggesting there may be undiscovered Wolbachia infections in PPNs. The goal of this study was to more broadly sample PPN Wolbachia strains in tylenchid nematodes to enable further comparative genomic analyses that may reveal Wolbachia’s role and identify targets for biocontrol. Published whole-genome shotgun assemblies and their raw sequence data from 33 Meloidogyne spp. assemblies, seven Globodera spp. assemblies, and seven Heterodera spp. assemblies were analyzed to look for Wolbachia. No Wolbachia was found in Meloidogyne spp. and Globodera spp., but among seven genome assemblies for Heterodera spp., an H. schachtii assembly from the Netherlands was found to have a large Wolbachia-like sequence that, when re-assembled from reads, formed a complete, circular genome. Detailed analyses comparing read coverage, GC content, pseudogenes, and phylogenomic patterns clearly demonstrated that the H. schachtii Wolbachia represented a novel strain (hereafter, denoted wHet). Phylogenomic tree construction with PhyloBayes showed wHet was most closely related to another PPN Wolbachia, wTex, while 16S rRNA gene analysis showed it clustered with other Heterodera Wolbachia assembled from sequence databases. Pseudogenes in wHet suggested relatedness to the PPN clade, as did the lack of significantly enriched GO terms compared to PPN Wolbachia strains. It remains unclear whether the lack of Wolbachia in other published H. schachtii isolates represents the true absence of the endosymbiont from some hosts.
more »
« less
Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes
Wolbachia is a widespread endosymbiont of insects and filarial nematodes that profoundly influences host biology. Wolbachia has also been reported in rhizosphere hosts, where its diversity and function remain poorly characterized. The discovery that plant-parasitic nematodes (PPNs) host Wolbachia strains with unknown roles is of interest evolutionarily, ecologically, and for agriculture as a potential target for developing new biological controls. The goal of this study was to screen communities for PPN endosymbionts and analyze genes and genomic patterns that might indicate their role. Genome assemblies revealed 1 out of 16 sampled sites had nematode communities hosting a Wolbachia strain, designated w Tex, that has highly diverged as one of the early supergroup L strains. Genome features, gene repertoires, and absence of known genes for cytoplasmic incompatibility, riboflavin, biotin, and other biosynthetic functions placed w Tex between mutualist C + D strains and reproductive parasite A + B strains. Functional terms enriched in group L included protoporphyrinogen IX, thiamine, lysine, fatty acid, and cellular amino acid biosynthesis, while dN/dS analysis suggested the strongest purifying selection on arginine and lysine metabolism, and vitamin B6, heme, and zinc ion binding, suggesting these as candidate roles in PPN Wolbachia . Higher dN/dS pathways between group L, w Pni from aphids, w Fol from springtails, and w CfeT from cat fleas suggested distinct functional changes characterizing these early Wolbachia host transitions. PPN Wolbachia had several putative horizontally transferred genes, including a lysine biosynthesis operon like that of the mitochondrial symbiont Midichloria , a spirochete-like thiamine synthesis operon shared only with w CfeT, an ATP/ADP carrier important in Rickettsia , and a eukaryote-like gene that may mediate plant systemic acquired resistance through the lysine-to-pipecolic acid system. The Discovery of group L-like variants from global rhizosphere databases suggests diverse PPN Wolbachia strains remain to be discovered. These findings support the hypothesis of plant-specialization as key to shaping early Wolbachia evolution and present new functional hypotheses, demonstrating promise for future genomics-based rhizosphere screens.
more »
« less
- Award ID(s):
- 2047684
- PAR ID:
- 10328073
- Date Published:
- Journal Name:
- Frontiers in Microbiology
- Volume:
- 13
- ISSN:
- 1664-302X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stochastic Fluctuations of the Facultative Endosymbiont Wolbachia due to Finite Host Population SizeABSTRACT Many insects and other animals host heritable endosymbionts that alter host fitness and reproduction. The prevalence of facultative endosymbionts can fluctuate in host populations across time and geography for reasons that are poorly understood. This is particularly true for maternally transmittedWolbachiabacteria, which infect roughly half of all insect species. For instance, the frequencies of severalwMel‐likeWolbachia, includingwMel in hostDrosophila melanogaster, fluctuate over time in certain host populations, but the specific conditions that generate temporal variation inWolbachiaprevalence are unresolved. We implemented a discrete generation model in the new R packagesymbiontmodelerto evaluate how finite‐population stochasticity contributes toWolbachiafluctuations over time in simulated host populations under a variety of conditions. Using empirical estimates from naturalWolbachia‐Drosophilasystems, we explored how stochasticity is determined by a broad range of factors, including host population size, maternal transmission rates, andWolbachiaeffects on host fitness (modeled as fecundity) and reproduction (cytoplasmic incompatibility; CI). While stochasticity generally increases when host fitness benefits and CI are relaxed, we found that a decline in the maternal transmission rate had the strongest relative impact on increasing the size of fluctuations. We infer that non‐ or weak‐CI‐causing strains likewMel, which often show evidence of imperfect maternal transmission, tend to generate larger stochastic fluctuations compared to strains that cause strong CI, likewRi inD. simulans. Additional factors, such as fluctuating host fitness effects, are required to explain the largest examples of temporal variation inWolbachia. The conditions we simulate here usingsymbiontmodelerserve as a jumping‐off point for understanding drivers of temporal and spatial variation in the prevalence ofWolbachia, the most common endosymbionts found in nature.more » « less
-
‘CandidatusLiberibacter’ is a group of bacterial species that are obligate intracellular plant pathogens and cause Huanglongbing disease of citrus trees and Zebra Chip in potatoes. Here, we examined the extent of intra- and interspecific genetic diversity across the genus using comparative genomics. Our approach examined a wide set ofLiberibactergenome sequences including five pathogenic species and one species not known to cause disease. By performing comparative genomics analyses, we sought to understand the evolutionary history of this genus and to identify genes or genome regions that may affect pathogenicity. With a set of 52 genomes, we performed comparative genomics, measured genome rearrangement, and completed statistical tests of positive selection. We explored markers of genetic diversity across the genus, such as average nucleotide identity across the whole genome. These analyses revealed the highest intraspecific diversity amongst the ‘Ca.Liberibacter solanacearum’ species, which also has the largest plant host range. We identified sets of core and accessory genes across the genus and within each species and measured the ratio of nonsynonymous to synonymous mutations (dN/dS) across genes. We identified ten genes with evidence of a history of positive selection in theLiberibactergenus, including genes in the Tad complex, which have been previously implicated as being highly divergent in the ‘Ca.L. capsica’ species based on high values of dN.more » « less
-
Abstract Chemical signalling in the plant microbiome can have drastic effects on microbial community structure, and on host growth and development. Previously, we demonstrated that the auxin metabolic signal interference performed by the bacterial genusVariovoraxvia an auxin degradation locus was essential for maintaining stereotypic root development in an ecologically relevant bacterial synthetic community. Here, we dissect theVariovoraxauxin degradation locus to define the genesiadDEas necessary and sufficient for indole-3-acetic acid (IAA) degradation and signal interference. We determine the crystal structures and binding properties of the operon’s MarR-family repressor with IAA and other auxins. Auxin degradation operons were identified across the bacterial tree of life and we define two distinct types on the basis of gene content and metabolic products:iac-like andiad-like. The structures of MarRs from representatives of each auxin degradation operon type establish that each has distinct IAA-binding pockets. Comparison of representative IAA-degrading strains from diverse bacterial genera colonizingArabidopsisplants show that while all degrade IAA, only strains containingiad-like auxin-degrading operons interfere with auxin signalling in a complex synthetic community context. This suggests thatiad-like operon-containing bacterial strains, includingVariovoraxspecies, play a key ecological role in modulating auxins in the plant microbiome.more » « less
-
Abstract Marine microorganisms inhabiting nutrient-depleted waters play critical roles in global biogeochemical cycles due to their abundance and broad distribution. Many of these microbes share similar genomic features including small genome size, low % G + C content, short intergenic regions, and low nitrogen content in encoded amino acid residue side chains (N-ARSC), but the evolutionary drivers of these characteristics are unclear. Here, we compared the strength of purifying selection across the Marinimicrobia, a candidate phylum which encompasses a broad range of phylogenetic groups with disparate genomic features, by estimating the ratio of nonsynonymous and synonymous substitutions (dN/dS) in conserved marker genes. Our analysis reveals that epipelagic Marinimicrobia that exhibit features consistent with genome streamlining have significantly lower dN/dS values when compared with their mesopelagic counterparts. We also found a significant positive correlation between median dN/dS values and % G + C content, N-ARSC, and intergenic region length. We did not identify a significant correlation between dN/dS ratios and estimated genome size, suggesting the strength of selection is not a primary factor shaping genome size in this group. Our findings are generally consistent with genome streamlining theory, which postulates that many genomic features of abundant epipelagic bacteria are the result of adaptation to oligotrophic nutrient conditions. Our results are also in agreement with previous findings that genome streamlining is common in epipelagic waters, suggesting that microbes inhabiting this region of the ocean have been shaped by strong selection together with prevalent nutritional constraints characteristic of this environment.more » « less
An official website of the United States government

