Federated learning (FL) is an efficient learning framework that assists distributed machine learning when data cannot be shared with a centralized server. Recent advancements in FL use predefined architecture-based learning for all clients. However, given that clients’ data are invisible to the server and data distributions are non-identical across clients, a predefined architecture discovered in a centralized setting may not be an optimal solution for all the clients in FL. Motivated by this challenge, we introduce SPIDER, an algorithmic frame- work that aims to Search PersonalIzed neural architecture for feDERated learning. SPIDER is designed based on two unique features: (1) alternately optimizing one architecture- homogeneous global model in a generic FL manner and architecture-heterogeneous local models that are connected to the global model by weight-sharing-based regularization, (2) achieving architecture-heterogeneous local models by a perturbation-based neural architecture search method. Experimental results demonstrate superior prediction performance compared with other state-of-the-art personalization methods. Code is available at https://github.com/ErumMushtaq/SPIDER.git.
more »
« less
Personalized Neural Architecture Search for Federated Learning
Federated Learning (FL) is a recently proposed learning paradigm for decentralized devices to collaboratively train a predictive model without exchanging private data. Existing FL frameworks, however, assume a one-size-fit-all model architecture to be collectively trained by local devices, which is determined prior to observing their data. Even with good engineering acumen, this often falls apart when local tasks are different and require diverging choices of architecture modelling to learn effectively. This motivates us to develop a novel personalized neural architecture search (NAS) algorithm for FL, which learns a base architecture that can be structurally personalized for quick adaptation to each local task. On several real- world datasets, our algorithm, FEDPNAS is able to achieve superior performance compared to other benchmarks on heterogeneous multitask scenarios.
more »
« less
- Award ID(s):
- 1937540
- PAR ID:
- 10328095
- Date Published:
- Journal Name:
- 1st NeurIPS Workshop on New Frontiers in Federated Learning (NFFL 2021)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Personalized Federated Learning via Domain Adaptation with an Application to Distributed 3D PrintingOver the years, Internet of Things (IoT) devices have become more powerful. This sets forth a unique opportunity to exploit local computing resources to distribute model learning and circumvent the need to share raw data. The underlying distributed and privacy-preserving data analytics approach is often termed federated learning (FL). A key challenge in FL is the heterogeneity across local datasets. In this article, we propose a new personalized FL model, PFL-DA, by adopting the philosophy of domain adaptation. PFL-DA tackles two sources of data heterogeneity at the same time: a covariate and concept shift across local devices. We show, both theoretically and empirically, that PFL-DA overcomes intrinsic shortcomings in state of the art FL approaches and is able to borrow strength across devices while allowing them to retain their own personalized model. As a case study, we apply PFL-DA to distributed desktop 3D printing where we obtain more accurate predictions of printing speed, which can help improve the efficiency of the printers.more » « less
-
Federated Learning (FL) revolutionizes collaborative machine learning among Internet of Things (IoT) devices by enabling them to train models collectively while preserving data privacy. FL algorithms fall into two primary categories: synchronous and asynchronous. While synchronous FL efficiently handles straggler devices, its convergence speed and model accuracy can be compromised. In contrast, asynchronous FL allows all devices to participate but incurs high communication overhead and potential model staleness. To overcome these limitations, the paper introduces a semi-synchronous FL framework that uses client tiering based on computing and communication latencies. Clients in different tiers upload their local models at distinct frequencies, striking a balance between straggler mitigation and communication costs. Building on this, the paper proposes the Dynamic client clustering, bandwidth allocation, and local training for semi-synchronous Federated learning (DecantFed) algorithm to dynamically optimize client clustering, bandwidth allocation, and local training workloads in order to maximize data sample processing rates in FL. DecantFed dynamically optimizes client clustering, bandwidth allocation, and local training workloads for maximizing data processing rates in FL. It also adapts client learning rates according to their tiers, thus addressing the model staleness issue. Extensive simulations using benchmark datasets like MNIST and CIFAR-10, under both IID and non-IID scenarios, demonstrate DecantFed’s superior performance. It outperforms FedAvg and FedProx in convergence speed and delivers at least a 28% improvement in model accuracy, compared to FedProx.more » « less
-
The recent developments in Federated Learning (FL) focus on optimizing the learning process for data, hardware, and model heterogeneity. However, most approaches assume all devices are stationary, charging, and always connected to the Wi-Fi when training on local data. We argue that when real devices move around, the FL process is negatively impacted and the device energy spent for communication is increased. To mitigate such effects, we propose a dynamic community selection algorithm which improves the communication energy efficiency and two new aggregation strategies that boost the learning performance in Hierarchical FL (HFL). For real mobility traces, we show that compared to state-of-the-art HFL solutions, our approach is scalable, achieves better accuracy on multiple datasets, converges up to 3.88× faster, and is significantly more energy efficient for both IID and non-IID scenarios.more » « less
-
Federated learning (FL) has been emerging as a new distributed machine learning paradigm recently. Although FL can protect the data privacy of participants by keeping their training data on local devices, there are recent works raising new privacy concerns especially when workers or the parameter server of FL are untrustworthy or malicious. One effective way to solve the problem is using hierarchical federated learning (HFL) where a few middle-layer aggregators (or called group leaders) are used to aggregate local model updates from workers and send group model updates to the parameter server. In this paper, we consider the participant selection problem of HFL in an edge cloud with multiple FL models, where each model needs to select one parameter server, a few group leaders and a certain amount of workers from edge servers to jointly perform HFL. We first formulate this problem as a non-linear integer programming, aiming to minimize the total learning cost of all models while satisfying the constrained edge resources. We then design a three-stage algorithm by decoupling the original problem into three sub-problems and solving them iteratively. Simulations with real-world datasets and FL models confirm that our proposed algorithm can efficiently reduce the average total learning cost in edge cloud compared with existing methods.more » « less
An official website of the United States government

