skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Immobilization of molecular catalysts on solid supports via atomic layer deposition for chemical synthesis in sustainable solvents
Homogeneous molecular catalysts are valued for their reaction specificity but face challenges in manufacturing scale-up due to complexities in final product separation, catalyst recovery, and instability in the presence of water. Heterogenizing these molecular catalysts, by attachment to a solid support, could transform the practical utility of molecular catalysts, simplify catalyst separation and recovery, and prevent catalyst decomposition by impeding bimolecular catalyst interactions. Previous strategies to heterogenize molecular catalysts via ligand-first binding to supports have suffered from reduced catalytic activity and leaching (loss) of catalyst, especially in environmentally friendly solvents like water. Herein, we describe an approach in which molecular catalysts are first attached to a metal oxide support through acidic ligands and then “encapsulated” with a metal oxide layer via atomic layer deposition (ALD) to prevent molecular detachment from the surface. For this initial report, which is based upon the well-studied Suzuki carbon–carbon cross-coupling reaction, we demonstrate the ability to achieve catalytic performance using a non-noble metal molecular catalyst in high aqueous content solvents. The catalyst chosen exhibits limited catalytic reactivity under homogeneous conditions due to extremely short catalyst lifetimes, but when heterogenized and immobilized with an optimal ALD layer thickness product yields >90% can be obtained in primarily aqueous solutions. Catalyst characterization before and after ALD application and catalytic reaction is achieved with infrared, electron paramagnetic resonance, and X-ray spectroscopies.  more » « less
Award ID(s):
1954809 1954850 1925797
PAR ID:
10328103
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Green Chemistry
Volume:
23
Issue:
23
ISSN:
1463-9262
Page Range / eLocation ID:
9523 to 9533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An ultra-thin overcoating of zirconium oxide (ZrO2) film on CuO-ZnO-Al2O3(CZA) catalysts by atomic layer deposition (ALD) was proved to enhance the catalytic performance of CZA/HZSM-5 (H form of Zeolite Socony Mobil-5) bifunctional catalysts for hydrogenation of CO2to dimethyl ether (DME). Under optimal reaction conditions (i.e. 240 °C and 2.8 MPa), the yield of product DME increased from 17.22% for the bare CZA/HZSM-5 catalysts, to 18.40% for the CZA catalyst after 5 cycles of ZrO2ALD with HZSM-5 catalyst. All the catalysts modified by ZrO2ALD displayed significantly improved catalytic stability of hydrogenation of CO2to DME reaction, compared to that of CZA/HZSM-5 bifunctional catalysts. The loss of DME yield in 100 h of reaction was greatly mitigated from 6.20% (loss of absolute value) to 3.01% for the CZA catalyst with 20 cycles of ZrO2ALD overcoating. Characterizations including hydrogen temperature programmed reduction, x-ray powder diffraction, and x-ray photoelectron spectroscopy revealed that there was strong interaction between Cu active centers and ZrO2
    more » « less
  2. Metal-mediated chemical reactions have been a vital area of research for over a century. Recently, there has been increasing effort to improve the performance of metal-mediated catalysis by optimizing the structure and chemical environment of active catalytic species towards process intensification and sustainability. Network-supported catalysts use a solid (rigid or flexible) support with embedded metal catalysts, ideally allowing for efficient precursor access to the catalytic sites and simultaneously not requiring a catalyst separation step following the reaction with minimal catalyst leaching. This minireview focuses on recent developments of network-supported catalysts to improve the performance of a wide range of metal-mediated catalytic reactions. We discuss in detail the different strategies to realize the combined benefits of homogeneous and heterogeneous catalysis in a metal catalyst support. We outline the unique versatility, tunability, properties, and activity of such hybrid catalysts in batch and continuous flow configurations. Furthermore, we present potential future directions to address some of the challenges and shortcomings of current flexible network-supported catalysts. 
    more » « less
  3. NA (Ed.)
    Metal catalyzed carbon-carbon bond forming reactions have rapidly become one of the most effective tools in organic synthesis for the assembly of highly functionalized molecules. These reactions have typically been carried out under homogeneous reaction conditions, which require the use of ligands to solubilize the catalyst and broaden its window of reactivity. However, the use of these catalysts under homogeneous conditions has limited their commercial viability due to product contamination as a direct result of inability to effectively separate the catalyst from the reaction product. Ligand-free heterogeneous catalysis presents a promising option to address this problem as evidenced by the significant increase in research activity in this area. We have recently developed a simple, one-step method for the preparation nickel nanoparticles supported on multi-walled carbon nanotubes (Ni/MWCNTs) under mechanical shaking in a ball-mill. The preparation method is very fast and straightforward which does not require any chemicals, solvents, or additional ligands. The as-prepared nanoparticles demonstrated remarkable catalytic activities in Suzuki cross-coupling reactions of the functionalized aryl halides and phenylboronic acids in batch with high turnover number in a single catalytic reaction. Batch operations have several inherent limitations that include reproducibility, scalability, and reactor productivity. Continuous flow chemistry has been considered as an alternative approach in academic and industrial processes due to its efficient and innovative synthetic design. Due to the low level of leaching observed in batch reactions as well as remarkable recyclability, the Ni/MWCNTs nanoparticles demonstrated remarkable catalytic activity in Suzuki coupling reactions with a diverse range of functionalized aryl halides and phenyl boronic acids under continuous flow conditions. Further optimization of the method including the reaction time, temperature, required solvents, flow rate, and minimum residence time will be discussed in this presentation. 
    more » « less
  4. Heterogeneous catalytic ozonation has been increasingly studied for the degradation and mineralization of refractory organic water pollutants in recent years. Compared with homogeneous catalysts, an important advantage of heterogeneous catalysts is that they can be easily separated from the treated water, making the process economically viable. While many studies have focused on the development and evaluation of metal oxide-based catalytic ozonation, possible leaching of metal ions and the subsequent effect on the contaminants' degradation are sometimes overlooked. Here, we examined metal leaching from several solid catalysts and further investigated the influence of the leached metal ions on the mineralization of two model compounds (oxalate and nitrobenzene) during continuous ozonation. Metallic ion leaching was observed from both commercially-available catalysts and catalysts prepared via wet-chemistry methods in the lab. The water matrix has been demonstrated to play an important role in metal leaching. The homogeneous catalytic effect resulting from the leached metal ions was found to be significant. A mechanism involving the formation of an unstable Cu( iii )/oxalate complex through the reaction between ˙OH and Cu( ii )/oxalate was proposed to explain the experimental observations. Our results indicate that the stability of the solid catalysts and the effects of the leached ions must be carefully examined during the catalytic ozonation of organic contaminants. Through this study we highlight the importance of rigorous, accepted protocols for evaluating and reporting heterogeneous catalyst performance in water/wastewater treatment within the research community. 
    more » « less
  5. Cerium oxide (ceria, CeO 2−x ) has been traditionally used as a catalyst support functionalized with metal nanoparticles or synthesized with metal dopants for a variety of applications ranging from catalytic converters to solid oxide fuel cells. In a departure from these typical heterogeneous motifs, we explore the interactions of nano-CeO 2−x systems with organometallic oxidation catalysts in organic solvents. Ceria is used here both as an organically-capped colloid and as an uncapped insoluble nanopowder. Both the colloid and nanopowder act as terminal oxidants by accepting hydrogen atoms from a ruthenium Noyori–Ikariya hydride complex. To our knowledge, this is the first demonstration that CeO 2−x can oxidize an organometallic hydride. Building on this concept, we show the uncapped CeO 2−x powder also acts as the terminal acceptor in catalytic alcohol dehydrogenation reactions, utilizing iridium pyridine sulfonamide catalysts under anaerobic and aerobic conditions. The coupling of homogeneous oxidation catalysts with cerium oxide demonstrates the versatility of CeO 2−x and a bridging of concepts in homogeneous and heterogeneous catalysis. 
    more » « less