skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predictive Monitoring with Logic-Calibrated Uncertainty for Cyber-Physical Systems
Predictive monitoring—making predictions about future states and monitoring if the predicted states satisfy requirements—offers a promising paradigm in supporting the decision making of Cyber-Physical Systems (CPS). Existing works of predictive monitoring mostly focus on monitoring individual predictions rather than sequential predictions. We develop a novel approach for monitoring sequential predictions generated from Bayesian Recurrent Neural Networks (RNNs) that can capture the inherent uncertainty in CPS, drawing on insights from our study of real-world CPS datasets. We propose a new logic named Signal Temporal Logic with Uncertainty (STL-U) to monitor a flowpipe containing an infinite set of uncertain sequences predicted by Bayesian RNNs. We define STL-U strong and weak satisfaction semantics based on whether all or some sequences contained in a flowpipe satisfy the requirement. We also develop methods to compute the range of confidence levels under which a flowpipe is guaranteed to strongly (weakly) satisfy an STL-U formula. Furthermore, we develop novel criteria that leverage STL-U monitoring results to calibrate the uncertainty estimation in Bayesian RNNs. Finally, we evaluate the proposed approach via experiments with real-world CPS datasets and a simulated smart city case study, which show very encouraging results of STL-U based predictive monitoring approach outperforming baselines.  more » « less
Award ID(s):
1942836
PAR ID:
10328190
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
Volume:
20
Issue:
5s
ISSN:
1539-9087
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a growing trend toward AI systems interacting with humans to revolutionize a range of application domains such as healthcare and transportation. However, unsafe human-machine interaction can lead to catastrophic failures. We propose a novel approach that predicts future states by accounting for the uncertainty of human interaction, monitors whether predictions satisfy or violate safety requirements, and adapts control actions based on the predictive monitoring results. Specifically, we develop a new quantitative predictive monitor based on Signal Temporal Logic with Uncertainty (STL-U) to compute a robustness degree interval, which indicates the extent to which a sequence of uncertain predictions satisfies or violates an STL-U requirement. We also develop a new loss function to guide the uncertainty calibration of Bayesian deep learning and a new adaptive control method, both of which leverage STL-U quantitative predictive monitoring results. We apply the proposed approach to two case studies: Type 1 Diabetes management and semi-autonomous driving. Experiments show that the proposed approach improves safety and effectiveness in both case studies. 
    more » « less
  2. Cyber-physical systems (CPS) designed in simulators, often consisting of multiple interacting agents (e.g., in multi-agent formations), behave differently in the real-world. We would like to verify these systems during runtime when they are deployed. Thus, we propose robust predictive runtime verification (RPRV) algorithms for: (1) general stochastic CPS under signal temporal logic (STL) tasks, and (2) stochastic multi-agent systems (MAS) under spatio-temporal logic tasks. The RPRV problem presents the following challenges: (1) there may not be sufficient data on the behavior of the deployed CPS, (2) predictive models based on design phase system trajectories may encounter distribution shift during real-world deployment, and (3) the algorithms need to scale to the complexity of MAS and be applicable to spatio-temporal logic tasks. To address these challenges, we assume knowledge of an upper bound on the statistical distance (in terms of anf-divergence) between the trajectory distributions of the system at deployment and design time. We are motivated by our prior work where we proposed an accurate and an interpretable RPRV algorithm for general CPS, which we here extend to the MAS setting and spatio-temporal logic tasks. Specifically, we use a learned predictive model to estimate the system behavior at runtime androbust conformal predictionto obtain probabilistic guarantees by accounting for distribution shifts. Building on our prior work, we perform robust conformal prediction over the robust semantics of spatio-temporal reach and escape logic (STREL) to obtain centralized RPRV algorithms for MAS. We empirically validate our results in a drone swarm simulator, where we show the scalability of our RPRV algorithms to MAS and analyze the impact of different trajectory predictors on the verification result. To the best of our knowledge, these are the first statistically valid algorithms for MAS under distribution shift. 
    more » « less
  3. In today's world, AI systems need to make sense of large amounts of data as it unfolds in real-time, whether it's a video from surveillance and monitoring cameras, streams of egocentric footage, or sequences in other domains such as text or audio. The ability to break these continuous data streams into meaningful events, discover nested structures, and predict what might happen next at different levels of abstraction is crucial for applications ranging from passive surveillance systems to sensory-motor autonomous learning. However, most existing models rely heavily on large, annotated datasets with fixed data distributions and offline epoch-based training, which makes them impractical for handling the unpredictability and scale of dynamic real-world environments. This dissertation tackles these challenges by introducing a set of predictive models designed to process streaming data efficiently, segment events, and build sequential memory models without supervision or data storage. First, we present a single-layer predictive model that segments long, unstructured video streams by detecting temporal events and spatially localizing objects in each frame. The model is applied to wildlife monitoring footage, where it processes continuous, high-frame-rate video and successfully detects and tracks events without supervision. It operates in an online streaming manner to perform simultaneous training and inference without storing or revisiting the processed data. This approach alleviates the need for manual labeling, making it ideal for handling long-duration, real-world video footage. Building on this, we introduce STREAMER, a multi-layered architecture that extends the single-layer model into a hierarchical predictive framework. STREAMER segments events at different levels of abstraction, capturing the compositional structure of activities in egocentric videos. By dynamically adapting to various timescales, it creates a hierarchy of nested events and forms more complex and abstract representations of the input data. Finally, we propose the Predictive Attractor Model (PAM), which builds biologically plausible memory models of sequential data. Inspired by neuroscience, PAM uses sparse distributed representations and local learning rules to avoid catastrophic forgetting, allowing it to continually learn and make predictions without overwriting previous knowledge. Unlike many traditional models, PAM can generate multiple potential future outcomes conditioned on the same context, which allows for handling uncertainty in generative tasks. Together, these models form a unified framework of predictive learning that addresses multiple challenges in event understanding and temporal data analyses. By using prediction as the core mechanism, they segment continuous data streams into events, discover hierarchical structures across multiple levels of abstraction, learn semantic event representations, and model sequences without catastrophic forgetting. 
    more » « less
  4. This study proposes a novel planning framework based on a model predictive control formulation that incorporates signal temporal logic (STL) specifications for task completion guarantees and robustness quantification. This marks the first-ever study to apply STL-guided trajectory optimization for bipedal locomotion push recovery, where the robot experiences unexpected disturbances. Existing recovery strategies often struggle with complex task logic reasoning and locomotion robustness evaluation, making them susceptible to failures due to inappropriate recovery strategies or insufficient robustness. To address this issue, the STL-guided framework generates optimal and safe recovery trajectories that simultaneously satisfy the task specification and maximize the locomotion robustness. Our framework outperforms a state-of-the-art locomotion controller in a high-fidelity dynamic simulation, especially in scenarios involving crossed-leg maneuvers. Furthermore, it demonstrates versatility in tasks such as locomotion on stepping stones, where the robot must select from a set of disjointed footholds to maneuver successfully. 
    more » « less
  5. Abstract—We present SaSTL—a novel Spatial Aggregation Signal Temporal Logic—for the efficient runtime monitoring of safety and performance requirements in smart cities. We first describe a study of over 1,000 smart city requirements, some of which can not be specified using existing logic such as Signal Temporal Logic (STL) and its variants. To tackle this limitation, we develop two new logical operators in SaSTL to augment STL for expressing spatial aggregation and spatial counting characteristics that are commonly found in real city requirements. We also develop efficient monitoring algorithms that can check a SaSTL requirement in parallel over multiple data streams (e.g., generated by multiple sensors distributed spatially in a city).We evaluate our SaSTL monitor by applying to two case studies with large-scale real city sensing data (e.g., up to 10,000 sensors in one requirement). The results show that SaSTL has a much higher coverage expressiveness than other spatial-temporal logics, and with a significant reduction of computation time for monitoring requirements. We also demonstrate that the SaSTL monitor can help improve the safety and performance of smart cities via simulated experiments. 
    more » « less