Predictive monitoring—making predictions about future states and monitoring if the predicted states satisfy requirements—offers a promising paradigm in supporting the decision making of Cyber-Physical Systems (CPS). Existing works of predictive monitoring mostly focus on monitoring individual predictions rather than sequential predictions. We develop a novel approach for monitoring sequential predictions generated from Bayesian Recurrent Neural Networks (RNNs) that can capture the inherent uncertainty in CPS, drawing on insights from our study of real-world CPS datasets. We propose a new logic named Signal Temporal Logic with Uncertainty (STL-U) to monitor a flowpipe containing an infinite set of uncertain sequences predicted by Bayesian RNNs. We define STL-U strong and weak satisfaction semantics based on whether all or some sequences contained in a flowpipe satisfy the requirement. We also develop methods to compute the range of confidence levels under which a flowpipe is guaranteed to strongly (weakly) satisfy an STL-U formula. Furthermore, we develop novel criteria that leverage STL-U monitoring results to calibrate the uncertainty estimation in Bayesian RNNs. Finally, we evaluate the proposed approach via experiments with real-world CPS datasets and a simulated smart city case study, which show very encouraging results of STL-U based predictive monitoring approach outperforming baselines. 
                        more » 
                        « less   
                    This content will become publicly available on April 11, 2026
                            
                            Quantitative Predictive Monitoring and Control for Safe Human-Machine Interaction
                        
                    
    
            There is a growing trend toward AI systems interacting with humans to revolutionize a range of application domains such as healthcare and transportation. However, unsafe human-machine interaction can lead to catastrophic failures. We propose a novel approach that predicts future states by accounting for the uncertainty of human interaction, monitors whether predictions satisfy or violate safety requirements, and adapts control actions based on the predictive monitoring results. Specifically, we develop a new quantitative predictive monitor based on Signal Temporal Logic with Uncertainty (STL-U) to compute a robustness degree interval, which indicates the extent to which a sequence of uncertain predictions satisfies or violates an STL-U requirement. We also develop a new loss function to guide the uncertainty calibration of Bayesian deep learning and a new adaptive control method, both of which leverage STL-U quantitative predictive monitoring results. We apply the proposed approach to two case studies: Type 1 Diabetes management and semi-autonomous driving. Experiments show that the proposed approach improves safety and effectiveness in both case studies. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10595832
- Publisher / Repository:
- AAAI
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 39
- Issue:
- 25
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 26203 to 26210
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract—We present SaSTL—a novel Spatial Aggregation Signal Temporal Logic—for the efficient runtime monitoring of safety and performance requirements in smart cities. We first describe a study of over 1,000 smart city requirements, some of which can not be specified using existing logic such as Signal Temporal Logic (STL) and its variants. To tackle this limitation, we develop two new logical operators in SaSTL to augment STL for expressing spatial aggregation and spatial counting characteristics that are commonly found in real city requirements. We also develop efficient monitoring algorithms that can check a SaSTL requirement in parallel over multiple data streams (e.g., generated by multiple sensors distributed spatially in a city).We evaluate our SaSTL monitor by applying to two case studies with large-scale real city sensing data (e.g., up to 10,000 sensors in one requirement). The results show that SaSTL has a much higher coverage expressiveness than other spatial-temporal logics, and with a significant reduction of computation time for monitoring requirements. We also demonstrate that the SaSTL monitor can help improve the safety and performance of smart cities via simulated experiments.more » « less
- 
            This work addresses the problem of learning optimal control policies for a multi-agent system in an adversarial environment. Specifically, we focus on multi-agent systems where the mission objectives are expressed as signal temporal logic (STL) specifications. The agents are classified as either defensive or adversarial. The defensive agents are maximizers, namely, they maximize an objective function that enforces the STL specification; the adversarial agents, on the other hand, are minimizers. The interaction among the agents is modeled as a finite-state team stochastic game with an unknown transition probability function. The synthesis objective is to determine optimal control policies for the defensive agents that implement the STL specification against the best responses of the adversarial agents. A multi-agent deep Q-learning algorithm, which is an extension of the minimax Q-learning algorithm, is then proposed to learn the optimal policies. The effectiveness of the proposed approach is illustrated through a simulation case study.more » « less
- 
            null (Ed.)Abstract Neural state classification (NSC) is a recently proposed method for runtime predictive monitoring of hybrid automata (HA) using deep neural networks (DNNs). NSC trains a DNN as an approximate reachability predictor that labels an HA state x as positive if an unsafe state is reachable from x within a given time bound, and labels x as negative otherwise. NSC predictors have very high accuracy, yet are prone to prediction errors that can negatively impact reliability. To overcome this limitation, we present neural predictive monitoring (NPM), a technique that complements NSC predictions with estimates of the predictive uncertainty. These measures yield principled criteria for the rejection of predictions likely to be incorrect, without knowing the true reachability values. We also present an active learning method that significantly reduces the NSC predictor’s error rate and the percentage of rejected predictions. We develop two versions of NPM based, respectively, on the use of frequentist and Bayesian techniques to learn the predictor and the rejection rule. Both versions are highly efficient, with computation times on the order of milliseconds, and effective, managing in our experimental evaluation to successfully reject almost all incorrect predictions. In our experiments on a benchmark suite of six hybrid systems, we found that the frequentist approach consistently outperforms the Bayesian one. We also observed that the Bayesian approach is less practical, requiring a careful and problem-specific choice of hyperparameters.more » « less
- 
            We propose a predictive runtime monitoring approach for linear systems with stochastic disturbances. The goal of the monitor is to decide if there exists a possible sequence of control inputs over a given time horizon to ensure that a safety property is maintained with a sufficiently high probability. We derive an efficient algorithm for performing the predictive monitoring in real time, specifically for linear time invariant (LTI) systems driven by stochastic disturbances. The algorithm implicitly defines a control envelope set such that if the current control input to the system lies in this set, there exists a future strategy over a time horizon consisting of the next N steps to guarantee the safety property of interest. As a result, the proposed monitor is oblivious of the actual controller, and therefore, applicable even in the presence of complex control systems including highly adaptive controllers. Furthermore, we apply our proposed approach to monitor whether a UAV will respect a “geofence” defined by a geographical region over which the vehicle may operate. To achieve this, we construct a data-driven linear model of the UAVs dynamics, while carefully modeling the uncertainties due to wind, GPS errors and modeling errors as time-varying disturbances. Using realistic data obtained from flight tests, we demonstrate the advantages and drawbacks of the predictive monitoring approach.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
