skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Antarctic Alga That Can Survive The Extreme Cold
Microscopic algae are tougher than you might think. Some can even survive the extreme cold. In this article, we describe one of the coolest algae of all, the Antarctic green alga called Chlamydomonas sp. UWO241. This one-celled super-organism lives deep in the frigid waters of a remote and permanently ice-covered lake in Antarctica. How does this little alga thrive in such a barren and unwelcoming place? Well, dive into this article to learn how studying the genome of UWO241 is helping scientists better understand this amazingly hardy alga.  more » « less
Award ID(s):
1637708
PAR ID:
10328228
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers for Young Minds
Volume:
10
ISSN:
2296-6846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yeast, molds and other fungi are found in most environments across the world. Many of the fungi that live on land today form relationships called symbioses with other microbes. Some of these relationships, like those formed with green algae, are beneficial and involve the exchange carbon, nitrogen and other important nutrients. Algae first evolved in the sea and it has been suggested that symbioses with fungi may have helped some algae to leave the water and to colonize the land more than 500 million years ago. A fungus called Mortierella elongata grows as a network of filaments in soils and produces large quantities of oils that have various industrial uses. While the details of Mortierella’s life in the wild are still not certain, the fungus is thought to survive by gaining nutrients from decaying matter and it is not known to form any symbioses with algae. In 2018, however, a team of researchers reported that, when M. elongata was grown in the laboratory with a marine alga known as Nannochloropsis oceanica, the two organisms appeared to form a symbiosis. Both the alga and fungus produce oil, and when grown together the two organisms produced more oil than when the fungus or algal cells were grown alone. However, it was not clear whether the fungus and alga actually benefit from the symbiosis, for example by exchanging nutrients and helping each other to resist stress. Du et al. – including many of the researchers involved in the earlier work – have now used biochemical techniques to study this relationship in more detail. The experiments found that there was a net flow of carbon from algal cells to the fungus, and a net flow of nitrogen in the opposite direction. When nutrients were scarce, algae and fungi grown in the same containers grew better than algae and fungi grown separately. Further, Mortierella only obtained carbon from living algae that attached to the fungal filaments and not from dead algae. Unexpectedly, further experiments found that when grown together over a period of several weeks or more some of the algal cells entered and lived within the filaments of the fungus. Previously, no algae had ever been seen to inhabit the living filaments of a fungus. These findings may help researchers to develop improved methods to produce oil from M. elongata and N. oceanica. Furthermore, this partnership provides a convenient new system to study how one organism can live within another and to understand how symbioses between algae and fungi may have first evolved. 
    more » « less
  2. null (Ed.)
    Antarctica is home to an assortment of psychrophilic algae, which have evolved various survival strategies for coping with their frigid environments. Here, we explore Antarctic psychrophily by examining the ∼212 Mb draft nuclear genome of the green alga Chlamydomonas sp. UWO241, which resides within the water column of a perennially ice-covered, hypersaline lake. Like certain other Antarctic algae, UWO241 encodes a large number (≥37) of ice-binding proteins, putatively originating from horizontal gene transfer. Even more striking, UWO241 harbors hundreds of highly similar duplicated genes involved in diverse cellular processes, some of which we argue are aiding its survival in the Antarctic via gene dosage. Gene and partial gene duplication appear to be an ongoing phenomenon within UWO241, one which might be mediated by retrotransposons. Ultimately, we consider how such a process could be associated with adaptation to extreme environments but explore potential non-adaptive hypotheses as well. 
    more » « less
  3. The transition of life from single cells to more complex multicellular forms has occurred at least two dozen times among eukaryotes and is one of the major evolutionary transitions, but the early steps that enabled multicellular life to evolve and thrive remain poorly understood. Volvocine green algae are a taxonomic group that is uniquely suited to investigating the step-wise acquisition of multicellular organization. The multicellular volvocine species Volvox carteri exhibits many hallmarks of complex multicellularity including complete germ-soma division of labor, asymmetric cell divisions, coordinated tissue-level morphogenesis, and dimorphic sexes-none of which have obvious analogs in its closest unicellular relative, the model alga Chlamydomonas reinhardtii. Here, I summarize some of the key questions and areas of study that are being addressed with Volvox carteri and how increasing genomic information and methodologies for volvocine algae are opening up the entire group as an integrated experimental system for exploring the evolution of multicellularity and more. 
    more » « less
  4. Abstract The benthic marine algae of the mainland coast of Ecuador are poorly known mainly due to a lack of collections. Currently, DNA barcoding is the preferred method to identify species of benthic marine algae worldwide, as morpho-anatomical characters are inadequate to distinguish many species of macroalgae. We used the red algal barcode rbc L-3P to identify specimens collected in January 2020 from Manabí, Ecuador as Neoizziella asiatica . This is the first member of the red algal order Nemaliales to be reported from the mainland coast of Ecuador and extends the distribution of this alga by 1,100 km to the south from Panama. 
    more » « less
  5. ABSTRACT Successful cell division requires faithful division and segregation of organelles into daughter cells. The unicellular algaChlamydomonas reinhardtiihas a single, large chloroplast whose division is spatiotemporally coordinated with furrowing. Cytoskeletal structures form in the same plane at the midzone of the dividing chloroplast (FtsZ) and the cell (microtubules), but how these structures are coordinated is not understood. Previous work showed that loss of F-actin blocks chloroplast division but not furrow ingression, suggesting that pharmacological perturbations can disorganize these events. In this study, we developed an imaging platform to screen natural compounds that perturb cell division while monitoring FtsZ and microtubules and identified 70 unique compounds. One compound, curcumin, has been proposed to bind to both FtsZ and tubulin proteins in bacteria and eukaryotes, respectively. InC. reinhardtii,where both targets coexist and are involved in cell division, curcumin at a specific dose range caused a severe disruption of the FtsZ ring in chloroplast while leaving the furrow-associated microtubule structures largely intact. Time-lapse imaging showed that loss of FtsZ and chloroplast division failure delayed the completion of furrowing but not the initiation, suggesting that the chloroplast-division checkpoint proposed in other algae requires FtsZ or is absent altogether inC. reinhardtii. SIGNIFICANCE STATEMENTSuccessful cell division requires the coordination of both organelle inheritance and cytokinesis. The unicellular algaChlamydomonas reinhardtii, which spatiotemporally coordinates the division of its chloroplast with cytokinesis, is an excellent model to study the regulation.We screened libraries of natural compounds for perturbations of cell and/or chloroplast division, identifying 70 unique chemicals. By time-lapse microscopy using one of the hits, curcumin, we demonstrate that although chloroplast division failures delay the completion of cytokinesis, it does not impair initiation.These findings suggest that the chloroplast-division checkpoint proposed in other algae requires FtsZ or is absent altogether inC. reinhardtii. 
    more » « less