skip to main content


Title: Draft genome sequence of the Antarctic green alga Chlamydomonas sp. UWO241
Antarctica is home to an assortment of psychrophilic algae, which have evolved various survival strategies for coping with their frigid environments. Here, we explore Antarctic psychrophily by examining the ∼212 Mb draft nuclear genome of the green alga Chlamydomonas sp. UWO241, which resides within the water column of a perennially ice-covered, hypersaline lake. Like certain other Antarctic algae, UWO241 encodes a large number (≥37) of ice-binding proteins, putatively originating from horizontal gene transfer. Even more striking, UWO241 harbors hundreds of highly similar duplicated genes involved in diverse cellular processes, some of which we argue are aiding its survival in the Antarctic via gene dosage. Gene and partial gene duplication appear to be an ongoing phenomenon within UWO241, one which might be mediated by retrotransposons. Ultimately, we consider how such a process could be associated with adaptation to extreme environments but explore potential non-adaptive hypotheses as well.  more » « less
Award ID(s):
1637708
NSF-PAR ID:
10250252
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
iScience
Volume:
24
Issue:
2
ISSN:
2589-0042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the Antarctic, sea ice algae use the highly dynamic sea ice as a platform for growth. Antarctic sea ice extent has recently been highly variable, first showing a slight increase and then a record decrease starting in 2016. We investigated the response of Antarctic ice algal habitat to variations in sea ice and other environmental forcings during 2004–2019. Combining an ice growth model, remote sensing and reanalysis data, and a radiative transfer model, we assessed whether light penetration to the bottom ice was sufficient for ice algal growth. Trends in the inputs over the 16 years were relatively small: there were no changes in ice thickness or bottom ice melt date, a 6.4% decrease in snow depth, a 1.2% decrease in incident light, and a 0.8°C decrease in air temperatures. Eighty‐one percent of the sea ice cover was habitable by ice algae for ≥14 days each year. The Antarctic has a larger extent and duration of potential ice algal habitat than the Arctic. Over time, the spatially averaged seasonal duration of habitat increased because a higher proportion of each pixel became habitable on average, compensating for the 2016–2019 reduction in sea ice extent. The spatial variability in potential habitat was strikingly high, even within geographic sectors. Bottom ice melt date (bloom termination) far surpassed other environmental factors in explaining variation (45%) in ice algal habitat on the 25 km scale. Because melt date depends on the ice‐atmosphere heat balance, Antarctic ice algal habitat may be highly sensitive to future climate changes.

     
    more » « less
  2. Abstract The presence of supercooled water in polar regions causes anchor ice to grow on submerged objects, generating costly problems for engineered materials and life-endangering risks for benthic communities. The factors driving underwater ice accretion are poorly understood, and passive prevention mechanisms remain unknown. Here we report that the Antarctic scallop Adamussium colbecki appears to remain ice-free in shallow Antarctic marine environments where underwater ice growth is prevalent. In contrast, scallops colonized by bush sponges in the same microhabitat grow ice and are removed from the population. Characterization of the Antarctic scallop shells revealed a hierarchical micro-ridge structure with sub-micron nano-ridges which promotes directed icing. This concentrates the formation of ice on the growth rings while leaving the regions in between free of ice, and appears to reduce ice-to-shell adhesion when compared to temperate species that do not possess highly ordered surface structures. The ability to control the formation of ice may enable passive underwater anti-icing protection, with the removal of ice possibly facilitated by ocean currents or scallop movements. We term this behavior cryofouling avoidance. We posit that the evolution of natural anti-icing structures is a key trait for the survival of Antarctic scallops in anchor ice zones. 
    more » « less
  3. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less
  4. Tropical environments with unique abiotic and biotic factors—such as salt ponds, mangroves, and coral reefs—are often in close proximity. The heterogeneity of these environments is reflected in community shifts over short distances, resulting in high biodiversity. While phytoplankton assemblages physically associated with corals, particularly their symbionts, are well studied, less is known about phytoplankton diversity across tropical aquatic environments. We assess shifts in phytoplankton community composition along inshore to offshore gradients by sequencing and analyzing 16S rRNA gene amplicons using primers targeting the V1-V2 region that capture plastids from eukaryotic phytoplankton and cyanobacteria, as well as heterotrophic bacteria. Microbial alpha diversity computed from 16S V1-V2 amplicon sequence variant (ASV) data from 282 samples collected in and around Curaçao, in the Southern Caribbean Sea, varied more within the dynamic salt ponds, salterns, and mangroves, compared to the seemingly stable above-reef, off-reef, and open sea environments. Among eukaryotic phytoplankton, stramenopiles often exhibited the highest relative abundances in mangrove, above-reef, off-reef, and open sea environments, where cyanobacteria also showed high relative abundances. Within stramenopiles, diatom amplicons dominated in salt ponds and mangroves, while dictyochophytes and pelagophytes prevailed above reefs and offshore. Green algae and cryptophytes were also present, and the former exhibited transitions following the gradient from inland to offshore. Chlorophytes and prasinophyte Class IV dominated in salt ponds, while prasinophyte Class II, including Micromonas commoda and Ostreococcus Clade OII, had the highest relative abundances of green algae in mangroves, above-reef, off-reef, and the open sea. To improve Class II prasinophyte classification, we sequenced 18S rRNA gene amplicons from the V4 region in 41 samples which were used to interrelate plastid-based results with information on uncultured prasinophyte species from prior 18S rRNA gene-based studies. This highlighted the presence of newly described Ostreococcus bengalensis and two Micromonas candidate species. Network analyses identified co-occurrence patterns between individual phytoplankton groups, including cyanobacteria, and heterotrophic bacteria. Our study reveals multiple uncultured and novel lineages within green algae and dictyochophytes in tropical marine habitats. Collectively, the algal diversity patterns and potential co-occurrence relationships observed in connection to physicochemical and spatial influences help provide a baseline against which future change can be assessed. 
    more » « less
  5. Background: Dinoflagellates are taxonomically diverse and ecologically important phytoplankton that are ubiquitously present in marine and freshwater environments. Mostly photosynthetic, dinoflagellates provide the basis of aquatic primary production; most taxa are free-living, while some can form symbiotic and parasitic associations with other organisms. However, knowledge of the molecular mechanisms that underpin the adaptation of these organisms to diverse ecological niches is limited by the scarce availability of genomic data, partly due to their large genome sizes estimated up to 250 Gbp. Currently available dinoflagellate genome data are restricted to Symbiodiniaceae (particularly symbionts of reef-building corals) and parasitic lineages, from taxa that have smaller genome size ranges, while genomic information from more diverse free living species is still lacking. Results: Here, we present two draft diploid genome assemblies of the free-living dinoflagellate Polarella glacialis, isolated from the Arctic and Antarctica. We found that about 68% of the genomes are composed of repetitive sequence, with long terminal repeats likely contributing to intra-species structural divergence and distinct genome sizes (3.0 and 2.7 Gbp). For each genome, guided using full-length transcriptome data, we predicted > 50,000 high-quality protein-coding genes, of which ~40% are in unidirectional gene clusters and ~25% comprise single exons. Multi-genome comparison unveiled genes specific to P. glacialis and a common, putatively bacterial origin of ice-binding domains in cold-adapted dinoflagellates. Conclusions: Our results elucidate how selection acts within the context of a complex genome structure to facilitate local adaptation. Because most dinoflagellate genes are constitutively expressed, Polarella glacialis has enhanced transcriptional responses via unidirectional, tandem duplication of single-exon genes that encode functions critical to survival in cold, low-light polar environments. These genomes provide a foundational reference for future research on dinoflagellate evolution. 
    more » « less