Program leaders put a tremendous amount of thought into how they recruit students for engineering summer camps. Recruitment methods can include information sessions, established partnerships with school districts, and teacher or school counselor nominations of students. This study seeks to assess if the methods used to recruit students broaden participation or have any impact on students’ perceptions of engineering. Two identical week-long summer camps were hosted by the University of Texas at Austin (UT Austin) in the summer of 2022. Camps were entirely free for all campers. A specific goal of the camp was to promote engineering as a career pathway for students from groups that have been historically excluded from STEM majors. Campers were rising 8th and 9th grade students in two cities near UT Austin; this age was intentionally identified as students who have sufficient STEM backgrounds to engage in meaningful engineering design challenges, and who are also at a critical inflection point with respect to decisions that put them on a trajectory to study engineering in college. Summer camp topics ranged from additive manufacturing to the chemical properties of water proofing, and students did activities such as constructing a prosthetic limb from recovered materials or designing an electronic dance game pad. In one camp session, students primarily found out about the camp by being nominated by counselors at their schools, with an intentional focus on recruiting students who might not otherwise be exposed to engineering. In the other camp session, parents signed up campers after hearing about the camp via information sent through the schools. All students who applied were accepted to the camps. Identical pre- and post-camp surveys asked campers questions about their knowledge of what engineers do, their interest in math and science, and what factors are important to them when choosing a career. Survey analysis showed that there were statistically significant differences in answers to questions between the groups in the pre-camp surveys, but post-camp surveys show that these differences disappeared after participating in the summer camp. Students whose parents directly enrolled them in the camp had higher pre-camp interest in science and technology; thus, counselor nominations may be a method to recruit students who might not have been interested in engineering had they not attended the camp. Additionally, prior to participating, campers recruited via counselor nominations had a narrower view of what engineers do than the parent-enrolled campers, but after camp the two groups had similar perceptions of what engineers do. The results of this study confirm literature findings regarding the importance of exposing young learners to engineering as a profession and broaden their views of opportunities in this field. The recruitment methods used for these camps show that nomination-based recruitment methods have the potential for greater impact on changing students’ engineering trajectories.
more »
« less
Research sites get closer to field camps over time: Informing environmental management through a geospatial analysis of science in the McMurdo Dry Valleys, Antarctica
As in many parts of the world, the management of environmental science research in Antarctica relies on cost-benefit analysis of negative environmental impact versus positive scientific gain. Several studies have examined the environmental impact of Antarctic field camps, but very little work looks at how the placement of these camps influences scientific research. In this study, we integrate bibliometrics, geospatial analysis, and historical research to understand the relationship between field camp placement and scientific production in the McMurdo Dry Valleys of East Antarctica. Our analysis of the scientific corpus from 1907–2016 shows that, on average, research sites have become less dispersed and closer to field camps over time. Scientific output does not necessarily correspond to the number of field camps, and constructing a field camp does not always lead to a subsequent increase in research in the local area. Our results underscore the need to consider the complex historical and spatial relationships between field camps and research sites in environmental management decision-making in Antarctica and other protected areas.
more »
« less
- Award ID(s):
- 1637708
- PAR ID:
- 10328236
- Editor(s):
- Martin, Charles William
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 11
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0257950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Outreach summer camps, particularly those focused on increasing the number of women in engineering, are commonplace. Some camps take the approach of a broad survey of engineering as a whole, while others focus on one specific discipline. Within the discipline-specific camps, there is a high degree of variability in curriculum and structure. This is apparent when considering if and how engineering design is built into the camp structure. While many studies have investigated the impact of outreach camps on engineering self-confidence among participants, few studies have sought to understand how the camp curriculum as a whole can influence these outcomes. To begin to understand the connection between outreach camp curriculum and engineering self-confidence among participants, we studied outreach camps targeted to high school women that varied in the incorporation of design into their structure. We chose to study three camps: (1) a design-focused camp, (2) a design-incorporated camp (run by the authors), and a (3) design-absent camp. All three camps were at the same university but based in different engineering disciplines. Results from pre-post survey Wilcoxon Signed Rank tests showed that design-focused and design-incorporated camps were able to improve students’ perspective of what engineering is (p <.01 and p = .02), while the design-absent camp had no change. The design-incorporated camp increased the participants’ desire to be an engineer (p = .02) while the design-absent camp decreased the participants’ desire to be an engineer (p = .02) and the design-focused camp had no effect. The design-absent camp also decreased the participants’ overall interest in engineering (p = .02). Additionally, both the design-incorporated and design-focused camps increased the participants’ confidence in conducting engineering design (p <.01 and p <.01), but only the design-incorporated camp had consistent improvements throughout the entire design cycle. Motivated by these results, we intend in future studies to more systematically probe the potential of different outreach curricula and structures to positively influence engineering perceptions.more » « less
-
A persistent problem in engineering is an insufficient number of students interested in pursuing engineering as a college major and career. Middle school is a critical time where student interest, identity, and career choices begin to solidify. Student interest in engineering at the K-12 level has been shown to predict whether they pursue engineering as a college major and career. Therefore, research is needed to determine if engineering summer camp activities affect engineering interest and identity in middle school students and in this paper, we present a research study approach to achieve the stated objective. To develop engineering-specific theories of how engineers are formed, this paper explores interest and identity development of three middle-school populations participating in engineering summer camps offered by the College of Engineering at a Western land-grant institution: (1) Young women in engineering camp (2) First generation camp and, (3) Introduction to engineering camp. The camps are identical in content and designed with the goal of increasing understanding of different engineering fields and careers. The only difference between the three camps is that the women-focused and first generation camps involve participation of guest speakers and role-model mentors appropriate for the camp populations. The main objective of designing this mixed-methods research study is to answer three research questions: (1) How strongly are engineering identity and interest linked to the intention to pursue engineering as a major in college and as a future career? (2) Which specific activities in the camps lead to a change in identity and interest in engineering? (3) To what extent and in what ways do the qualitative participant focus group interviews and observations of participants engaged in camp activities addressing research question (2) contribute to a comprehensive understanding of the quantitative data obtained via pre- and post-surveys addressing research question (1)? The research design leverages existing quantitative surveys. Additionally, focus groups and observations will be based on a selected set of questions from these surveys. The research design consists of one phase with two data streams. Quantitative data are gathered in Phase 1 from two data collection points: first, when students register for the camp and, second, at the end of the camp (post-survey). Qualitative data in the form of in-depth focus group interviews (at the end of the camp) with 4 – 5 participants per focus group and observations of camp activities during the five days of camp are implemented. For the qualitative analysis, Grounded Theory is utilized for analyzing focus group interview and observation transcripts using an iterative process that involves reading, discussing, and coding. This paper will present details of the quantitative and qualitative analysis methods used for this study. The research is funded by the National Science Foundation PFE:RIEF program.more » « less
-
It has been shown that out-of-classroom experiences build engineering students’ professional skills and engineering identities. Many other universities host engineering summer camps for middle and high school students and employ engineering undergraduate students as camp counselors. These camps are designed for students with minimal previous exposure to engineering. In this research study, we explore the impact of working as a counselor in these camps on counselors’ Community Cultural Wealth (CCW) assets and self-defined characteristics of an engineer. Five summer camp counselors in one institution’s 2023 summer camp programs participated in post-camp semi-structured interviews about their experiences as counselors. Two counselors identified as Black/ African American and three as Hispanic/ Latino/a/é; two identified as women and three as men. Collectively, counselors discussed all six types of capital in the CCW framework. Most commonly, they reported that they are actively improving skills they believe engineers to have (aspirational capital), that being a camp counselor improved their communication skills (linguistic capital), and built them a close network of friends that many consider to be like family (familial capital). Those who were in affinity-based student orgs, such as the National Society of Black Engineers (NSBE) and the Society of Hispanic Professional Engineers (SHPE), encouraged non-members to join, building their social capital on campus. One participant mentioned that because being a camp counselor was her first job, she gained valuable life skills such as completing tax forms and managing a personal budget (navigational capital). Some counselors also talked about what it meant to them to be role models for campers of their same racial/ ethnic backgrounds, since they didn’t know such engineers growing up (resistant capital). While out-of-classroom engineering experiences and their effects are well-studied, they are often limited to experiences such as extracurricular engineering activities or service learning projects. Despite the prevalence of engineering summer camp programs, the effects of working as a camp counselor are understudied. We hope that the results of this study will compel those running engineering summer camps to think not only about what the campers, but also the camp counselors themselves, are gaining from participating in these programs.more » « less
-
null (Ed.)In response to the need to broaden participation in computer science, we designed a summer camp to teach middle-school-aged youth to code apps with MIT App Inventor. For the past four summers, we have observed significant gains in youth's interest and self-efficacy in computer science, after attending our camps. The majority of these youth, however, were youth from our local community. To provide equal access across the state and secure more diversity, we were interested in examining the effect of the camp on a broader population of youth. Thus, we partnered with an outreach program to reach and test our camps on youth from low-income high-poverty areas in the Intermountain West. During the summer of 2019, we conducted two sets of camps: locally advertised app camps that attracted youth from our local community and a second set of camps as part of a larger outreach program for youth from low-income high-poverty areas. The camps for both populations followed the same design of personnel, camp activities, structure, and curriculum. However, the background of the participants was slightly different. Using survey data, we found that the local sample experienced significant gains in both self-efficacy and interest, while the outreach group only reported significant gains in self-efficacy after attending the camp. However, the qualitative data collected from the outreach participants indicated that they had a positive experience both with the camp and their mentors. In this article, we discuss the camp design and findings in relation to strategies for broadening participation in Computer Science education.more » « less