skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How chain dynamics affects crack initiation in double-network gels
Double-network gels are a class of tough soft materials comprising two elastic networks with contrasting structures. The formation of a large internal damage zone ahead of the crack tip by the rupturing of the brittle network accounts for the large crack resistance of the materials. Understanding what determines the damage zone is the central question of the fracture mechanics of double-network gels. In this work, we found that at the onset of crack propagation, the size of necking zone, in which the brittle network breaks into fragments and the stretchable network is highly stretched, distinctly decreases with the increase of the solvent viscosity, resulting in a reduction in the fracture toughness of the material. This is in sharp contrast to the tensile behavior of the material that does not change with the solvent viscosity. This result suggests that the dynamics of stretchable network strands, triggered by the rupture of the brittle network, plays a role. To account for this solvent viscosity effect on the crack initiation, a delayed blunting mechanism regarding the polymer dynamics effect is proposed. The discovery on the role of the polymer dynamic adds an important missing piece to the fracture mechanism of this unique material.  more » « less
Award ID(s):
1903308
PAR ID:
10328238
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
49
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Toughness of soft materials such as elastomers and gels depends on their ability to dissipate energy and to reduce stress concentration at the crack tip. The primary energy dissipation mechanism is viscoelasticity. Most analyses and models of fracture are based on linear viscoelastic theory (LVT) where strains are assumed to be small and the relaxation mechanisms are independent of stress or strain history. A well-known paradox is that the size of the dissipative zone predicted by LVT is unrealistically small. Here we use a physically based nonlinear viscoelastic model to illustrate why the linear theory breaks down. Using this nonlinear model and analogs of crack problems, we give a plausible resolution to this paradox. In our model, viscoelasticity arises from the breaking and healing of physical cross-links in the polymer network. When the deformation is small, the kinetics of bond breaking and healing are independent of the strain/stress history and the model reduces to the standard linear theory. For large deformations, localized bond breaking damages the material near the crack tip, reducing stress concentration and dissipating energy at the same time. The damage zone size is a new length scale which depends on the strain required to accelerate bond breaking kinetics. These effects are illustrated by considering two cases with stress concentrations: the evolution of spherical damage in a viscoelastic body subjected to internal pressure, and a zero degree peel test. 
    more » « less
  2. Large-Area Additive Manufacturing (LAAM) has seen increased application in manufacturing meter-scale, polymeric composite structural parts, especially for tooling and fixturing. Unfortunately, LAAM introduces manufacturing-induced defects in printed composites, e.g., intrabead microvoids and poor interbead adhesion that are not otherwise seen when traditional manufacturing methods are used, causing degradation of mechanical and fracture properties. In this paper, the fracture behavior of neat acrylonitrile butadiene styrene (ABS) and short carbon fiber-reinforced ABS (CF/ABS) fabricated by LAAM is compared and analyzed by evaluating their energy release rate šŗš¼š‘ and fracture mechanisms. A double cantilever beam with doublers (DCB-D) test for single-bead, double-bead, and multiple-bead configurations is developed by incorporating rigid doublers to reduce the compressive failure at the crack tip, allowing for the measurement of crack propagation. A new data reduction method for these configurations is derived to remove the doubler effect from the šŗš¼š‘ calculation, producing ā€˜pure’ intrabead and interbead šŗš¼š‘ values. We show that CF/ABS is more damage tolerant than ABS at the intrabead level, but less damage tolerant than ABS at the interbead level. The development of plastic ligaments in ABS helps dissipate additional strain energy, improving the overall energy release rate. The experimental fracture test approach developed here is expected to provide mechanistic insight into their damage tolerance capability, accelerating the qualification process of LAAM-produced polymer and polymer composites. 
    more » « less
  3. The microstructural design has an essential effect on the fracture response of brittle materials. We present a stochastic bulk damage formulation to model dynamic brittle fracture. This model is compared with a similar interfacial model for homogeneous and heterogeneous materials. The damage models are rate-dependent, and the corresponding damage evolution includes delay effects. The delay effect provides mesh objectivity with much less computational efforts. A stochastic field is defined for material cohesion and fracture strength to involve microstructure effects in the proposed formulations. The statistical fields are constructed through the Karhunen-Loeve (KL) method. An advanced asynchronous Spacetime Discontinuous Galerkin (aSDG) method is used to discretize the final system of coupled equations. Application of the presented formulation is shown through dynamic fracture simulation of rock under a uniaxial compressive load. The final results show that a stochastic bulk damage model produces more realistic results in comparison with a homogenizes model. 
    more » « less
  4. The line crack models, including linear elastic fracture mechanics (LEFM), cohesive crack model (CCM), and extended finite element method (XFEM), rest on the century-old hypothesis of constancy of materials’ fracture energy. However, the type of fracture test presented here, named the gap test, reveals that, in concrete and probably all quasibrittle materials, including coarse-grained ceramics, rocks, stiff foams, fiber composites, wood, and sea ice, the effective mode I fracture energy depends strongly on the crack-parallel normal stress, in-plane or out-of-plane. This stress can double the fracture energy or reduce it to zero. Why hasn’t this been detected earlier? Because the crack-parallel stress in all standard fracture specimens is negligible, and is, anyway, unaccountable by line crack models. To simulate this phenomenon by finite elements (FE), the fracture process zone must have a finite width, and must be characterized by a realistic tensorial softening damage model whose vectorial constitutive law captures oriented mesoscale frictional slip, microcrack opening, and splitting with microbuckling. This is best accomplished by the FE crack band model which, when coupled with microplane model M7, fits the test results satisfactorily. The lattice discrete particle model also works. However, the scalar stress–displacement softening law of CCM and tensorial models with a single-parameter damage law are inadequate. The experiment is proposed as a standard. It represents a simple modification of the three-point-bend test in which both the bending and crack-parallel compression are statically determinate. Finally, a perspective of various far-reaching consequences and limitations of CCM, LEFM, and XFEM is discussed. 
    more » « less
  5. Abstract The crack band model, which was shown to provide a superior computational representation of fracture of quasibrittle materials (in this journal, May 2022), still suffers from three limitations: (1) The material damage is forced to be uniform across a one-element wide band because of unrestricted strain localization instability; (2) the width of the fracture process zone is fixed as the width of a single element; and (3) cracks inclined to rectangular mesh lines are represented by a rough zig-zag damage band. Presented is a generalization that overcomes all three, by enforcing a variable multi-element width of the crack band front controlled by a material characteristic length l0. This is achieved by introducing a homogenized localization energy density that increases, after a certain threshold, as a function of an invariant of the third-order tensor of second gradient of the displacement vector, called the sprain tensorĪ·, representing (in isotropic materials) the magnitude of its Laplacian (not expressible as a strain-gradient tensor). The continuum free energy density must be augmented by additional sprain energy Φ(l0Ī·), which affects only the postpeak softening damage. In finite element discretization, the localization resistance is effected by applying triplets of self-equilibrated in-plane nodal forces, which follow as partial derivatives of Φ(l0Ī·). The force triplets enforce a variable multi-element crack band width. The damage distribution across the fracture process zone is non-uniform but smoothed. The standard boundary conditions of the finite element method apply. Numerical simulations document that the crack band propagates through regular rectangular meshes with virtually no directional bias. 
    more » « less