skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supporting Simultaneous Air Revitalization and Thermal Control in a Crewed Habitat With Temperate Chlorella vulgaris and Eurythermic Antarctic Chlorophyta
Including a multifunctional, bioregenerative algal photobioreactor for simultaneous air revitalization and thermal control may aid in carbon loop closure for long-duration surface habitats. However, using water-based algal media as a cabin heat sink may expose the contained culture to a dynamic, low temperature environment. Including psychrotolerant microalgae, native to these temperature regimes, in the photobioreactor may contribute to system stability. This paper assesses the impact of a cycled temperature environment, reflective of spacecraft thermal loops, to the oxygen provision capability of temperate Chlorella vulgaris and eurythermic Antarctic Chlorophyta. The tested 28-min temperature cycles reflected the internal thermal control loops of the International Space Station ( C . vulgaris , 9–27°C; Chlorophyta-Ant, 4–14°C) and included a constant temperature control (10°C). Both sample types of the cycled temperature condition concluded with increased oxygen production rates ( C . vulgaris ; initial: 0.013 mgO 2 L –1 , final: 3.15 mgO 2 L –1 and Chlorophyta-Ant; initial: 0.653 mgO 2 L –1 , final: 1.03 mgO 2 L –1 ) and culture growth, suggesting environmental acclimation. Antarctic sample conditions exhibited increases or sustainment of oxygen production rates normalized by biomass dry weight, while both C . vulgaris sample conditions decreased oxygen production per biomass. However, even with the temperature-induced reduction, cycled temperature C . vulgaris had a significantly higher normalized oxygen production rate than Antarctic Chlorophyta. Chlorophyll fluorometry measurements showed that the cycled temperature conditions did not overly stress both sample types (F V /F M : 0.6–0.75), but the Antarctic Chlorophyta sample had significantly higher fluorometry readings than its C . vulgaris counterpart ( F = 6.26, P < 0.05). The steady state C . vulgaris condition had significantly lower fluorometry readings than all other conditions (F V /F M : 0.34), suggesting a stressed culture. This study compares the results to similar experiments conducted in steady state or diurnally cycled temperature conditions. Recommendations for surface system implementation are based off the presented results. The preliminary findings imply that both C . vulgaris and Antarctic Chlorophyta can withstand the dynamic temperature environment reflective of a thermal control loop and these data can be used for future design models.  more » « less
Award ID(s):
1637708
PAR ID:
10328262
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biodiesel is an eco-friendly renewable fuel that can be derived from microalgae. Maximization of biomass and lipid productivities are considered the main challenges for algal biodiesel production. Since conventional batch cultures are time-, space-, and reagent-consuming with many restrictions to apply many replicates, microfluidic technology has recently emerged as an alternative low-cost and efficient technology with high throughput repeatability and reproducibility. Different applications of microfluidic devices in algal biotechnology have been reported, including cell identification, sorting, trapping, and metabolic screening. In this work, Chlorella vulgaris was investigated by encapsulating in a simple droplet-based micro-array device at different light intensities of 20, 80, and 200 µmol/m2/s combined with different nitrate concentrations of 17.6, 8.8, and 4.4 mM. The growth results for C. vulgaris within microfluidic device were compared to the conventional batch culture method. In addition, the effect of combined stress of deficiencies in irradiance and nitrogen availability were studied to illustrate their impact on the metabolic profiling of microalgae. The results showed that the most optimum favorable culturing conditions for Chlorella vulgaris growth within the microfluidic channels were 17.6 mM and 80 µmol/m2/s. 
    more » « less
  2. Machine learning presents opportunities to improve the scale-specific accuracy of mechanistic models in a data-driven manner. Here we demonstrate the use of a machine learning technique called Sparse Identification of Nonlinear Dynamics (SINDy) to improve a simple mechanistic model of algal growth. Time-series measurements of the microalga Chlorella Vulgaris were generated under controlled photobioreactor conditions at the University of Technology Sydney. A simple mechanistic growth model based on intensity of light and temperature was integrated over time and compared to the time-series data. While the mechanistic model broadly captured the overall growth trend, discrepancies remained between the model and data due to the model's simplicity and non-ideal behavior of real-world measurement. SINDy was applied to model the residual error by identifying an error derivative correction term. Addition of this SINDy-informed error dynamics term shows improvement to model accuracy while maintaining interpretability of the underlying mechanistic framework. This work demonstrates the potential for machine learning techniques like SINDy to aid simple mechanistic models in scale-specific predictive accuracy. 
    more » « less
  3. Abstract Engineered cyanobacteriumSynechococcus elongatuscan use light and CO2to produce sucrose, making it a promising candidate for use in co-cultures with heterotrophic workhorses. However, this process is challenged by the mutual stresses generated from the multispecies microbial culture. Here we demonstrate an ecosystem whereS. elongatusis freely grown in a photo-bioreactor (PBR) containing an engineered heterotrophic workhorse (either β-carotene-producingYarrowia lipolytica or indigoidine-producingPseudomonas putida) encapsulated in calcium-alginate hydrogel beads. The encapsulation prevents growth interference, allowing the cyanobacterial culture to produce high sucrose concentrations enabling the production of indigoidine and β-carotene in the heterotroph. Our experimental PBRs yielded an indigoidine titer of 7.5 g/L hydrogel and a β-carotene titer of 1.3 g/L hydrogel, amounts 15–22-fold higher than in a comparable co-culture without encapsulation. Moreover,13C-metabolite analysis and protein overexpression tests indicated that the hydrogel beads provided a favorable microenvironment where the cell metabolism inside the hydrogel was comparable to that in a free culture. Finally, the heterotroph-containing hydrogels were easily harvested and dissolved by EDTA for product recovery, while the cyanobacterial culture itself could be reused for the next batch of immobilized heterotrophs. This co-cultivation and hydrogel encapsulation system is a successful demonstration of bioprocess optimization under photobioreactor conditions. 
    more » « less
  4. Abstract Large Oligocene Antarctic ice sheets co-existed with warm proximal waters offshore Wilkes Land. Here we provide a broader Southern Ocean perspective to such warmth by reconstructing the strength and variability of the Oligocene Australian-Antarctic latitudinal sea surface temperature gradient. Our Oligocene TEX 86 -based sea surface temperature record from offshore southern Australia shows temperate (20–29 °C) conditions throughout, despite northward tectonic drift. A persistent sea surface temperature gradient (~5–10 °C) exists between Australia and Antarctica, which increases during glacial intervals. The sea surface temperature gradient increases from ~26 Ma, due to Antarctic-proximal cooling. Meanwhile, benthic foraminiferal oxygen isotope decline indicates ice loss/deep-sea warming. These contrasting patterns are difficult to explain by greenhouse gas forcing alone. Timing of the sea surface temperature cooling coincides with deepening of Drake Passage and matches results of ocean model experiments that demonstrate that Drake Passage opening cools Antarctic proximal waters. We conclude that Drake Passage deepening cooled Antarctic coasts which enhanced thermal isolation of Antarctica. 
    more » « less
  5. null (Ed.)
    This study investigates the effect of condensed water droplets on the areal biomass productivity of outdoor culture systems with a free surface, protected by a transparent window or cover to prevent contamination and to control the growth conditions. Under solar radiation, evaporation from the culture causes droplets to condense on the interior surface of the cover. To quantify the effect of droplets on the system’s performance, the bidirectional transmittance of a droplet-covered window was predicted using the Monte Carlo ray-tracing method. It was combined with a growth kinetics model of Chlorella vulgaris to predict the temporal evolution of the biomass concentration on 21 June and 23 September in Los Angeles, CA. A droplet contact angle of 30∘ or 90∘ and a surface area coverage of 50% or 90% were considered. Light scattering by the condensed droplets changed the direction of the incident sunlight while reducing the amount of light reaching the culture by up to 37%. The combined effect decreased the daily areal biomass productivity with increasing droplet contact angle and surface area coverage by as much as 18%. Furthermore, the areal biomass productivity of the system was found to scale with the ratio X0/a of the initial biomass concentration X0 and the specific illuminated area a, as previously established for different photobioreactor geometries, but even in the presence of droplets. Finally, for a given day of the year, the optical thickness of the culture that yielded the maximum productivity was independent of the window condition. Thus, the design and operation of such a system should focus on maintaining a small droplet contact angle and surface area coverage and an optimum optical thickness to maximize productivity. 
    more » « less