skip to main content


Title: Supporting Simultaneous Air Revitalization and Thermal Control in a Crewed Habitat With Temperate Chlorella vulgaris and Eurythermic Antarctic Chlorophyta
Including a multifunctional, bioregenerative algal photobioreactor for simultaneous air revitalization and thermal control may aid in carbon loop closure for long-duration surface habitats. However, using water-based algal media as a cabin heat sink may expose the contained culture to a dynamic, low temperature environment. Including psychrotolerant microalgae, native to these temperature regimes, in the photobioreactor may contribute to system stability. This paper assesses the impact of a cycled temperature environment, reflective of spacecraft thermal loops, to the oxygen provision capability of temperate Chlorella vulgaris and eurythermic Antarctic Chlorophyta. The tested 28-min temperature cycles reflected the internal thermal control loops of the International Space Station ( C . vulgaris , 9–27°C; Chlorophyta-Ant, 4–14°C) and included a constant temperature control (10°C). Both sample types of the cycled temperature condition concluded with increased oxygen production rates ( C . vulgaris ; initial: 0.013 mgO 2 L –1 , final: 3.15 mgO 2 L –1 and Chlorophyta-Ant; initial: 0.653 mgO 2 L –1 , final: 1.03 mgO 2 L –1 ) and culture growth, suggesting environmental acclimation. Antarctic sample conditions exhibited increases or sustainment of oxygen production rates normalized by biomass dry weight, while both C . vulgaris sample conditions decreased oxygen production per biomass. However, even with the temperature-induced reduction, cycled temperature C . vulgaris had a significantly higher normalized oxygen production rate than Antarctic Chlorophyta. Chlorophyll fluorometry measurements showed that the cycled temperature conditions did not overly stress both sample types (F V /F M : 0.6–0.75), but the Antarctic Chlorophyta sample had significantly higher fluorometry readings than its C . vulgaris counterpart ( F = 6.26, P < 0.05). The steady state C . vulgaris condition had significantly lower fluorometry readings than all other conditions (F V /F M : 0.34), suggesting a stressed culture. This study compares the results to similar experiments conducted in steady state or diurnally cycled temperature conditions. Recommendations for surface system implementation are based off the presented results. The preliminary findings imply that both C . vulgaris and Antarctic Chlorophyta can withstand the dynamic temperature environment reflective of a thermal control loop and these data can be used for future design models.  more » « less
Award ID(s):
1637708
NSF-PAR ID:
10328262
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biodiesel is an eco-friendly renewable fuel that can be derived from microalgae. Maximization of biomass and lipid productivities are considered the main challenges for algal biodiesel production. Since conventional batch cultures are time-, space-, and reagent-consuming with many restrictions to apply many replicates, microfluidic technology has recently emerged as an alternative low-cost and efficient technology with high throughput repeatability and reproducibility. Different applications of microfluidic devices in algal biotechnology have been reported, including cell identification, sorting, trapping, and metabolic screening. In this work, Chlorella vulgaris was investigated by encapsulating in a simple droplet-based micro-array device at different light intensities of 20, 80, and 200 µmol/m2/s combined with different nitrate concentrations of 17.6, 8.8, and 4.4 mM. The growth results for C. vulgaris within microfluidic device were compared to the conventional batch culture method. In addition, the effect of combined stress of deficiencies in irradiance and nitrogen availability were studied to illustrate their impact on the metabolic profiling of microalgae. The results showed that the most optimum favorable culturing conditions for Chlorella vulgaris growth within the microfluidic channels were 17.6 mM and 80 µmol/m2/s. 
    more » « less
  2. Abstract

    Engineered cyanobacteriumSynechococcus elongatuscan use light and CO2to produce sucrose, making it a promising candidate for use in co-cultures with heterotrophic workhorses. However, this process is challenged by the mutual stresses generated from the multispecies microbial culture. Here we demonstrate an ecosystem whereS. elongatusis freely grown in a photo-bioreactor (PBR) containing an engineered heterotrophic workhorse (either β-carotene-producingYarrowia lipolytica or indigoidine-producingPseudomonas putida) encapsulated in calcium-alginate hydrogel beads. The encapsulation prevents growth interference, allowing the cyanobacterial culture to produce high sucrose concentrations enabling the production of indigoidine and β-carotene in the heterotroph. Our experimental PBRs yielded an indigoidine titer of 7.5 g/L hydrogel and a β-carotene titer of 1.3 g/L hydrogel, amounts 15–22-fold higher than in a comparable co-culture without encapsulation. Moreover,13C-metabolite analysis and protein overexpression tests indicated that the hydrogel beads provided a favorable microenvironment where the cell metabolism inside the hydrogel was comparable to that in a free culture. Finally, the heterotroph-containing hydrogels were easily harvested and dissolved by EDTA for product recovery, while the cyanobacterial culture itself could be reused for the next batch of immobilized heterotrophs. This co-cultivation and hydrogel encapsulation system is a successful demonstration of bioprocess optimization under photobioreactor conditions.

     
    more » « less
  3. null (Ed.)
    This study investigates the effect of condensed water droplets on the areal biomass productivity of outdoor culture systems with a free surface, protected by a transparent window or cover to prevent contamination and to control the growth conditions. Under solar radiation, evaporation from the culture causes droplets to condense on the interior surface of the cover. To quantify the effect of droplets on the system’s performance, the bidirectional transmittance of a droplet-covered window was predicted using the Monte Carlo ray-tracing method. It was combined with a growth kinetics model of Chlorella vulgaris to predict the temporal evolution of the biomass concentration on 21 June and 23 September in Los Angeles, CA. A droplet contact angle of 30∘ or 90∘ and a surface area coverage of 50% or 90% were considered. Light scattering by the condensed droplets changed the direction of the incident sunlight while reducing the amount of light reaching the culture by up to 37%. The combined effect decreased the daily areal biomass productivity with increasing droplet contact angle and surface area coverage by as much as 18%. Furthermore, the areal biomass productivity of the system was found to scale with the ratio X0/a of the initial biomass concentration X0 and the specific illuminated area a, as previously established for different photobioreactor geometries, but even in the presence of droplets. Finally, for a given day of the year, the optical thickness of the culture that yielded the maximum productivity was independent of the window condition. Thus, the design and operation of such a system should focus on maintaining a small droplet contact angle and surface area coverage and an optimum optical thickness to maximize productivity. 
    more » « less
  4. Grand Lake St. Marys (GLSM) is a popular recreational lake located in western Ohio, United States, generating nearly $150 million in annual revenue. However, recurring algal blooms dominated by Planktothrix agardhii , which can produce harmful microcystin toxins, have raised concerns about water safety and negatively impacted the local economy. Planktothrix agardhii is host to a number of parasites and pathogens, including an obligate fungal parasite in the Chytridiomycota (chytrids). In this study, we investigated the potential of these chytrid ( Rhizophydium sp.) to infect P. agardhii blooms in the environment by modifying certain environmental conditions thought to limit infection prevalence in the wild. With a focus on temperature and water mixing, mesocosms were designed to either increase or decrease water flow compared to the control (water outside the mesocosm). In the control and water circulation mesocosms, infections were found infrequently and were found on less than 0.75% of the Planktothrix population. On the other hand, by decreasing the water flow to stagnation, chytrid infections were more frequent (found in nearly 3x as many samples) and more prevalent, reaching a maximum infection rate of 4.12%. In addition, qPCR coupled with 16S–18S sequencing was utilized to confirm the genetic presence of both host and parasite, as well as to better understand the effect of water circulation on the community composition. Statistical analysis of the data confirmed that chytrid infection was dependent on water temperature, with infections predominantly occurring between 19°C and 23°C. Additionally, water turbulence can significantly reduce the infectivity of chytrids, as infections were mostly found in stagnant mesocosms. Further, decreasing the water circulation promoted the growth of the cyanobacterial population, while increasing water agitation promoted the growth of green algae (Chlorophyta). This study starts to explore the environmental factors that affect chytrid pathogenesis which can provide valuable insights into controlling measures to reduce the prevalence of harmful algal blooms and improve water quality in GLSM and similarly affected waterbodies. 
    more » « less
  5. Metabolic products such as lipids and proteins produced in cyanobacteria represent an excellent source of biomass and do not compete with agricultural land use unlike soybean and corn. Given their potential use as novel materials for biodiesel production, we aimed to explore the e ect of cultivation period and nitrogen concentration on the growth rate and lipid content of Fremyella diplosiphon, a model cyanobacterium. In this study, F. diplosiphon grown in BG11/HEPES medium supplemented with 1.5 g L􀀀1 sodium nitrate (NaNO3) for 7, 10, 15, and 20 days were compared to the untreated control in media amended with 0.25, 0.5, and 1.0 g L􀀀1 NaNO3. Cultures were inoculated in liquid media and grown under continuous fluorescent light in an orbital incubator shaker, and extracted lipids subjected to gravimetric analysis and gas chromatography-mass spectroscopy to determine the best culture conditions for lipid production. Our results demonstrated that a reduction in nitrogen concentration had no significant effect on the growth rate across all cultivation periods; however, the accumulation of total lipid content was significantly influenced by nitrogen concentration. A maximum lipid production (40%) with no reduction in growth was observed in 10-day old cultures in a BG11/HEPES medium supplemented with 1.0 g L􀀀1 NaNO3. Fatty acid methyl ester composition of transesterified lipids demonstrated high amounts of methyl palmitate (50–70%) followed by methyl octadecenoate (17–30%) in the accumulated lipids at all treatments. Trace quantities of methyl dodecanoate, methyl hexadecanoate, methyl octadecanoate, and methyl octadecadienoate (1–8%) were also observed in all tested samples, indicating that nitrogen deprivation in culture media increases lipid production without affecting growth. 
    more » « less