In this article, we define Vassiliev measures of complexity for open curves in 3-space. These are related to the coefficients of the enhanced Jones polynomial of open curves in 3-space. These Vassiliev measures are continuous functions of the curve coordinates; as the ends of the curve tend to coincide, they converge to the corresponding Vassiliev invariants of the resulting knot. We focus on the second Vassiliev measure from the enhanced Jones polynomial for closed and open curves in 3-space. For closed curves, this second Vassiliev measure can be computed by a Gauss code diagram and it has an integral formulation, the double alternating self-linking integral. The double alternating self-linking integral is a topological invariant of closed curves and a continuous function of the curve coordinates for open curves in 3-space. For polygonal curves, the double alternating self-linking integral obtains a simpler expression in terms of geometric probabilities.
more »
« less
The second Vassiliev measure of uniform random walks and polygons in confined space
Abstract Biopolymers, like chromatin, are often confined in small volumes. Confinement has a great effect on polymer conformations, including polymer entanglement. Polymer chains and other filamentous structures can be represented by polygonal curves in three-space. In this manuscript, we examine the topological complexity of polygonal chains in three-space and in confinement as a function of their length. We model polygonal chains by equilateral random walks in three-space and by uniform random walks (URWs) in confinement. For the topological characterization, we use the second Vassiliev measure. This is an integer topological invariant for polygons and a continuous functions over the real numbers, as a function of the chain coordinates for open polygonal chains. For URWs in confined space, we prove that the average value of the Vassiliev measure in the space of configurations increases as O ( n 2 ) with the length of the walks or polygons. We verify this result numerically and our numerical results also show that the mean value of the second Vassiliev measure of equilateral random walks in three-space increases as O ( n ). These results reveal the rate at which knotting of open curves and not simply entanglement are affected by confinement.
more »
« less
- PAR ID:
- 10328290
- Date Published:
- Journal Name:
- Journal of Physics A: Mathematical and Theoretical
- Volume:
- 55
- Issue:
- 9
- ISSN:
- 1751-8113
- Page Range / eLocation ID:
- 095601
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Random knot models are often used to measure the types of entanglements one would expect to observe in an unbiased system with some given physical property or set of properties. In nature, macromolecular chains often exist in extreme confinement. Current techniques for sampling random polygons in confinement are limited. In this paper, we gain insight into the knotting behavior of random polygons in extreme confinement by studying random polygons restricted to cylinders, where each edge connects the top and bottom disks of the cylinder. The knot spectrum generated by this model is compared to the knot spectrum of rooted equilateral random polygons in spherical confinement. Due to the rooting, such polygons require a radius of confinement R ⩾ 1. We present numerical evidence that the polygons generated by this simple cylindrical model generate knot probabilities that are equivalent to spherical confinement at a radius of R ≈ 0.62. We then show how knot complexity and the relative probability of different classes of knot types change as the length of the polygon increases in the cylindrical polygons.more » « less
-
Abstract Knots in open strands such as ropes, fibers, and polymers, cannot typically be described in the language of knot theory, which characterizes only closed curves in space. Simulations of open knotted polymer chains, often parameterized to DNA, typically perform a closure operation and calculate the Alexander polynomial to assign a knot topology. This is limited in scenarios where the topology is less well-defined, for example when the chain is in the process of untying or is strongly confined. Here, we use a discretized version of the Second Vassiliev Invariant for open chains to analyze Langevin Dynamics simulations of untying and strongly confined polymer chains. We demonstrate that the Vassiliev parameter can accurately and efficiently characterize the knotted state of polymers, providing additional information not captured by a single-closure Alexander calculation. We discuss its relative strengths and weaknesses compared to standard techniques, and argue that it is a useful and powerful tool for analyzing polymer knot simulations.more » « less
-
null (Ed.)In this manuscript, we introduce a method to measure entanglement of curves in 3-space that extends the notion of knot and link polynomials to open curves. We define the bracket polynomial of curves in 3-space and show that it has real coefficients and is a continuous function of the curve coordinates. This is used to define the Jones polynomial in a way that it is applicable to both open and closed curves in 3-space. For open curves, the Jones polynomial has real coefficients and it is a continuous function of the curve coordinates and as the endpoints of the curve tend to coincide, the Jones polynomial of the open curve tends to that of the resulting knot. For closed curves, it is a topological invariant, as the classical Jones polynomial. We show how these measures attain a simpler expression for polygonal curves and provide a finite form for their computation in the case of polygonal curves of 3 and 4 edges.more » « less
-
Abstract We present a faster direct sampling algorithm for random equilateral closed polygons in three-dimensional space. This method improves on the moment polytope sampling algorithm of Cantarellaet al(2016J. Phys. A: Math. Theor.49275202) and has (expected) time per sample quadratic in the number of edges in the polygon. We use our new sampling method and a new code for computing invariants based on the Alexander polynomial to investigate the probability of finding unknots among equilateral closed polygons.more » « less
An official website of the United States government

