skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Polariton relaxation under vibrational strong coupling: Comparing cavity molecular dynamics simulations against Fermi’s golden rule rate
Under vibrational strong coupling (VSC), the formation of molecular polaritons may significantly modify the photo-induced or thermal properties of molecules. In an effort to understand these intriguing modifications, both experimental and theoretical studies have focused on the ultrafast dynamics of vibrational polaritons. Here, following our recent work [Li et al., J. Chem. Phys. 154, 094124 (2021)], we systematically study the mechanism of polariton relaxation for liquid CO 2 under a weak external pumping. Classical cavity molecular dynamics (CavMD) simulations confirm that polariton relaxation results from the combined effects of (i) cavity loss through the photonic component and (ii) dephasing of the bright-mode component to vibrational dark modes as mediated by intermolecular interactions. The latter polaritonic dephasing rate is proportional to the product of the weight of the bright mode in the polariton wave function and the spectral overlap between the polariton and dark modes. Both these factors are sensitive to parameters such as the Rabi splitting and cavity mode detuning. Compared to a Fermi’s golden rule calculation based on a tight-binding harmonic model, CavMD yields a similar parameter dependence for the upper polariton relaxation lifetime but sometimes a modest disagreement for the lower polariton. We suggest that this disagreement results from polariton-enhanced molecular nonlinear absorption due to molecular anharmonicity, which is not included in our analytical model. We also summarize recent progress on probing nonreactive VSC dynamics with CavMD.  more » « less
Award ID(s):
1953701
NSF-PAR ID:
10328317
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
156
Issue:
13
ISSN:
0021-9606
Page Range / eLocation ID:
134106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For a small fraction of hot CO2molecules immersed in a liquid‐phase CO2thermal bath, classical cavity molecular dynamics simulations show that forming collective vibrational strong coupling (VSC) between the C=O asymmetric stretch of CO2molecules and a cavity mode accelerates hot‐molecule relaxation. This acceleration stems from the fact that polaritons can be transiently excited during the nonequilibrium process, which facilitates intermolecular vibrational energy transfer. The VSC effects on these rates 1) resonantly depend on the cavity mode detuning, 2) cooperatively depend on Rabi splitting, and 3) collectively scale with the number of hot molecules. For larger cavity volumes, the average VSC effect per molecule can remain meaningful for up toN≈104molecules forming VSC. Moreover, the transiently excited lower polariton prefers to relax by transferring its energy to the tail of the molecular energy distribution rather than distributing it equally to all thermal molecules. As far as the parameter dependence is concerned, the vibrational relaxation data presented here appear analogous to VSC catalysis in Fabry–Pérot microcavities.

     
    more » « less
  2. Abstract

    For a small fraction of hot CO2molecules immersed in a liquid‐phase CO2thermal bath, classical cavity molecular dynamics simulations show that forming collective vibrational strong coupling (VSC) between the C=O asymmetric stretch of CO2molecules and a cavity mode accelerates hot‐molecule relaxation. This acceleration stems from the fact that polaritons can be transiently excited during the nonequilibrium process, which facilitates intermolecular vibrational energy transfer. The VSC effects on these rates 1) resonantly depend on the cavity mode detuning, 2) cooperatively depend on Rabi splitting, and 3) collectively scale with the number of hot molecules. For larger cavity volumes, the average VSC effect per molecule can remain meaningful for up toN≈104molecules forming VSC. Moreover, the transiently excited lower polariton prefers to relax by transferring its energy to the tail of the molecular energy distribution rather than distributing it equally to all thermal molecules. As far as the parameter dependence is concerned, the vibrational relaxation data presented here appear analogous to VSC catalysis in Fabry–Pérot microcavities.

     
    more » « less
  3. We simulate vibrational strong coupling (VSC) and vibrational ultrastrong coupling (V-USC) for liquid water with classical molecular dynamics simulations. When the cavity modes are resonantly coupled to the O−H stretch mode of liquid water, the infrared spectrum shows asymmetric Rabi splitting. The lower polariton (LP) may be suppressed or enhanced relative to the upper polariton (UP) depending on the frequency of the cavity mode. Moreover, although the static properties and the translational diffusion of water are not changed under VSC or V-USC, we do find the modification of the orientational autocorrelation function of H2O molecules especially under V-USC, which could play a role in ground-state chemistry.

     
    more » « less
  4. null (Ed.)
    We use classical cavity molecular dynamics simulations to investigate the effect of optical cavity environment on vibrational energy transfer and relaxation. For a small fraction of vibrationally hot CO2 molecules immersed in a liquid-phase CO2 thermal bath, in a cavity that supports a cavity mode in resonance with the CO asymmetric stretch vibration, forming collective vibrational strong coupling (VSC) and a cavity mode accelerates hot molecule relaxation. This acceleration stems from the fact that polaritons can be transiently excited during the nonequilibrium process, which facilitates intermolecular vibrational energy transfer. The VSC effects on these rates (i) resonantly depend on the cavity mode detuning, (ii) cooperatively depend on Rabi splitting, and (iii) collectively scale with the number of hot molecules. This behavior weakens with increasing cavity size (at constant molecular density), that is, constant Rabi splitting) but remains meaningful up to cavities containing 10^4 molecules 
    more » « less
  5. Abstract

    Interaction between light and matter results in new quantum states whose energetics can modify chemical kinetics. In the regime of ensemble vibrational strong coupling (VSC), a macroscopic number$$N$$Nof molecular transitions couple to each resonant cavity mode, yielding two hybrid light–matter (polariton) modes and a reservoir of$$N-1$$N1dark states whose chemical dynamics are essentially those of the bare molecules. This fact is seemingly in opposition to the recently reported modification of thermally activated ground electronic state reactions under VSC. Here we provide a VSC Marcus–Levich–Jortner electron transfer model that potentially addresses this paradox: although entropy favors the transit through dark-state channels, the chemical kinetics can be dictated by a few polaritonic channels with smaller activation energies. The effects of catalytic VSC are maximal at light–matter resonance, in agreement with experimental observations.

     
    more » « less