skip to main content


Title: How green can Amazon hydropower be? Net carbon emission from the largest hydropower plant in Amazonia
The current resurgence of hydropower expansion toward tropical areas has been largely based on run-of-the-river (ROR) dams, which are claimed to have lower environmental impacts due to their smaller reservoirs. The Belo Monte dam was built in Eastern Amazonia and holds the largest installed capacity among ROR power plants worldwide. Here, we show that postdamming greenhouse gas (GHG) emissions in the Belo Monte area are up to three times higher than preimpoundment fluxes and equivalent to about 15 to 55 kg CO 2 eq MWh −1 . Since per-area emissions in Amazonian reservoirs are significantly higher than global averages, reducing flooded areas and prioritizing the power density of hydropower plants seem to effectively reduce their carbon footprints. Nevertheless, total GHG emissions are substantial even from this leading-edge ROR power plant. This argues in favor of avoiding hydropower expansion in Amazonia regardless of the reservoir type.  more » « less
Award ID(s):
1754317
NSF-PAR ID:
10328418
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
26
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Belo Monte hydropower complex located in the Xingu River is the largestrun-of-the-river (ROR) hydroelectric system in the world and has one of thehighest energy production capacities among dams. Its construction receivedsignificant media attention due to its potential social and environmentalimpacts. It is composed of two ROR reservoirs: the Xingu Reservoir (XR) inthe Xingu's main branch and the Intermediate Reservoir (IR), an artificialreservoir fed by waters diverted from the Xingu River with longer waterresidence time compared to XR. We aimed to evaluate spatiotemporalvariations in CO2 partial pressure (pCO2) and CO2 fluxes(FCO2) during the first 2 years after the Xingu River impoundmentunder the hypothesis that each reservoir has contrasting FCO2 andpCO2 as vegetation clearing reduces flooded area emissions. Time ofthe year had a significant influence on pCO2 with the highest averagevalues observed during the high-water season. Spatial heterogeneitythroughout the entire study area was observed for pCO2 during both low-and high-water seasons. FCO2, on the other hand, only showed significantspatial heterogeneity during the high-water period. FCO2 (0.90±0.47 and 1.08±0.62 µmol m2 d−1 for XR and IR,respectively) and pCO2 (1647±698 and 1676±323 µatm for XR and IR, respectively) measured during the high-water season wereon the same order of magnitude as previous observations in other Amazonianclearwater rivers unaffected by impoundment during the same season. Incontrast, during the low-water season FCO2 (0.69±0.28 and 7.32±4.07 µmol m2 d−1 for XR and IR, respectively) andpCO2 (839±646 and 1797±354 µatm for XR and IR,respectively) in IR were an order of magnitude higher than literatureFCO2 observations in clearwater rivers with naturally flowing waters.When CO2 emissions are compared between reservoirs, IR emissions were90 % higher than values from the XR during low-water season, reinforcingthe clear influence of reservoir characteristics on CO2 emissions.Based on our observations in the Belo Monte hydropower complex, CO2emissions from ROR reservoirs to the atmosphere are in the range of naturalAmazonian rivers. However, the associated reservoir (IR) may exceed naturalriver emission rates due to the preimpounding vegetation influence. Sincemany reservoirs are still planned to be constructed in the Amazon andthroughout the world, it is critical to evaluate the implications ofreservoir traits on FCO2 over their entire life cycle in order toimprove estimates of CO2 emissions per kilowatt for hydropower projectsplanned for tropical rivers. 
    more » « less
  2. The global development of hydropower dams has rapidly expanded over the last several decades and has spread to historically non-impounded systems such as the Amazon River’s main low land tributaries in Brazil. Despite the recognized significance of reservoirs to the global methane (CH 4 ) emission, the processes controlling this emission remain poorly understood, especially in Tropical reservoirs. Here we evaluate CH 4 dynamics in the main channel and downstream of the Santo Antônio hydroelectric reservoir, a large tropical run-of-the-river (ROR) reservoir in Amazonia. This study is intended to give a snapshot of the CH 4 dynamics during the falling water season at the initial stage after the start of operations. Our results show substantial and higher CH 4 production in reservoirs’ littoral sediment than in the naturally flooded areas downstream of the dam. Despite the large production in the reservoir or naturally flooded areas, high CH 4 oxidation in the main channel keep the concentration and fluxes of CH 4 in the main channel low. Similar CH 4 concentrations in the reservoir and downstream close to the dam suggest negligible degassing at the dam, but stable isotopic evidence indicates the presence of a less oxidized pool of CH 4 after the dam. ROR reservoirs are designed to disturb the natural river flow dynamics less than traditional reservoirs. If enough mixing and oxygenation remain throughout the reservoir’s water column, naturally high CH 4 oxidation rates can also remain and limit the diffusive CH 4 emissions from the main channel. Nevertheless, it is important to highlight that our results focused on emissions in the deep and oxygenated main channel. High emissions, mainly through ebullition, may occur in the vast and shallow areas represented by bays and tributaries. However, detailed assessments are still required to understand the impacts of this reservoir on the annual emissions of CH 4 . 
    more » « less
  3. Abstract

    Collectively, reservoirs constitute a significant global source of C‐based greenhouse gases (GHGs). Yet, global estimates of reservoir carbon dioxide (CO2) and methane (CH4) emissions remain uncertain, varying more than four‐fold in recent analyses. Here we present results from a global application of the Greenhouse Gas from Reservoirs (G‐res) model wherein we estimate per‐area and per‐reservoir CO2and CH4fluxes, by specific flux pathway and in a spatially and temporally explicit manner, as a function of reservoir characteristics. We show: (a) CH4fluxes via degassing and ebullition are much larger than previously recognized and diffusive CH4fluxes are lower than previously estimated, while CO2emissions are similar to those reported in past work; (b) per‐area reservoir GHG fluxes are >29% higher than suggested by previous studies, due in large part to our novel inclusion of the degassing flux in our global estimate; (c) CO2flux is the dominant emissions pathway in boreal regions and CH4degassing and ebullition are dominant in tropical and subtropical regions, with the highest overall reservoir GHG fluxes in the tropics and subtropics; and (d) reservoir GHG fluxes are quite sensitive to input parameters that are both poorly constrained and likely to be strongly influenced by climate change in coming decades (parameters such as temperature and littoral area, where the latter may be expanded by deepening thermoclines expected to accompany warming surface waters). Together these results highlight a critical need to both better understand climate‐related drivers of GHG emission and to better quantify GHG emissions via CH4ebullition and degassing.

     
    more » « less
  4. Abstract

    Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere. In the framework of the second phase of the REgional Carbon Cycle Assessment and Processes (RECCAP‐2) initiative, we synthesize existing estimates of GHG emissions from streams, rivers, lakes and reservoirs, and homogenize them with regard to underlying global maps of water surface area distribution and the effects of seasonal ice cover. We then produce regionalized estimates of GHG emissions over 10 extensive land regions. According to our synthesis, inland water GHG emissions have a global warming potential of an equivalent emission of 13.5 (9.9–20.1) and 8.3 (5.7–12.7) Pg CO2‐eq. yr−1at a 20 and 100 years horizon (GWP20and GWP100), respectively. Contributions of CO2dominate GWP100, with rivers being the largest emitter. For GWP20, lakes and rivers are equally important emitters, and the warming potential of CH4is more important than that of CO2. Contributions from N2O are about two orders of magnitude lower. Normalized to the area of RECCAP‐2 regions, S‐America and SE‐Asia show the highest emission rates, dominated by riverine CO2emissions.

     
    more » « less
  5. null (Ed.)
    Hydropower is the largest renewable energy source for electricity generation in the world, with numerous benefits in terms of: environment protection (near-zero air pollution and climate impact), cost-effectiveness (long-term use, without significant impacts of market fluctuation), and reliability (quickly respond to surge in demand). However, the effectiveness of hydropower plants is affected by multiple factors such as reservoir capacity, rainfall, temperature and fluctuating electricity demand, and particularly their complicated relationships, which make the prediction/recommendation of station operational output a difficult challenge. In this paper, we present DeepHydro, a novel stochastic method for modeling multivariate time series (e.g., water inflow/outflow and temperature) and forecasting power generation of hydropower stations. DeepHydro captures temporal dependencies in co-evolving time series with a new conditioned latent recurrent neural networks, which not only considers the hidden states of observations but also preserves the uncertainty of latent variables. We introduce a generative network parameterized on a continuous normalizing flow to approximate the complex posterior distribution of multivariate time series data, and further use neural ordinary differential equations to estimate the continuous-time dynamics of the latent variables constituting the observable data. This allows our model to deal with the discrete observations in the context of continuous dynamic systems, while being robust to the noise. We conduct extensive experiments on real-world datasets from a large power generation company consisting of cascade hydropower stations. The experimental results demonstrate that the proposed method can effectively predict the power production and significantly outperform the possible candidate baseline approaches. 
    more » « less